Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}[pstricks,border=8pt,12pt]
- \usepackage[utf8]{inputenc}
- \usepackage{geometry} [a4paper,lmargin=1.5cm,rmargin=1.5cm,Botton=1.5cm,top=1.5cm]
- \usepackage{ifthen}
- \usepackage{graphicx} \usepackage{wrapfig} \usepackage{color} \usepackage{amsmath} \usepackage[T1]{fontenc} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{cancel} \usepackage[all]{xy} \usepackage{pstricks}
- \usepackage{pst-pdf}
- \usepackage{pst-all}
- \usepackage{fancybox} \usepackage{tikz} \usepackage{tikz-3dplot}
- \usepackage{gnuplottex}
- \tikzset{flippedeventlabel/.append style={align=center}} \usetikzlibrary{matrix.skeleton} \usetikzlibrary[shapes,arrows,positioning,fit,backgrounds,intersections,shadows,calc,shadings] \usetikzlibrary{positioning} \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.pathmorphing} \pgfdeclarelayer{background layer} \pgfdeclarelayer{foreground layer} \pgfsetlayers{background layer,main,foreground layer}
- \usetikzlibrary{datavisualization.formats.functions}
- \usepackage{pgf-pie}
- \usepackage{color,colortbl} \usepackage{lscape} \usepackage{pgfplots} \pgfplotsset{compat=newest} \usetikzlibrary{datavisualization} \usetikzlibrary[shapes,arrows.meta,positioning,fit,backgrounds,intersections,shadows,calc,datavisualization.formats.functions]
- \usetikzlibrary{patterns} \usepackage[colorlinks=true,linkcolor=black,citecolor=black,filecolor=magenta,urlcolor=blue]{hyperref} %Paquete de estilo de referencias
- \urlstyle{same}
- \date{\today}
- % Start the document
- \begin{document}
- %\pagecolor{black}
- % Definición local de colores
- %\colorlet{greenlow}{green!50!black}
- \colorlet{grlow}{green!60!blue}
- \colorlet{orlow}{orange!80!red}
- %\begin{landscape}
- \section*{Example:}
- \qquad Let
- $A = \begin{bmatrix}
- 1 & 2 \\
- 0 & 1
- \end{bmatrix}$
- and
- $B = \begin{bmatrix}
- 1 & 0 \\
- 2 & 1
- \end{bmatrix}$
- freely generated a subgroup of $SL_2(\mathbb{Z}).$\\
- \vspace{0.3cm}
- \noindent Let $H_1:= \Big{\langle}\begin{bmatrix}
- 1 & 2 \\
- 0 & 1
- \end{bmatrix}\Big{\rangle} $
- $= \Big{\{}\begin{bmatrix}
- 1 & 2n \\
- 0 & 1
- \end{bmatrix}$ $\setminus \ n \in \mathbb{Z}\Big{\}}$ and
- $H_2:= \Big{\langle}\begin{bmatrix}
- 1 & 0 \\
- 2 & 1
- \end{bmatrix}\Big{\rangle} $
- $= \Big{\{}\begin{bmatrix}
- 1 & 0\\
- 2n & 1
- \end{bmatrix}$ $\setminus \ n \in \mathbb{Z}\Big{\}}.$ \\
- \vspace{0.3cm}
- \noindent Consider the action of $SL_2(\mathbb{Z}).$ on the projectiv $SL_2(\mathbb{Z}) \cap \mathbb{P}(\mathbb{R}^2)$ and the disjoint sets of $\mathbb{P}(\mathbb{R}^2)$
- $$X_1:= \{ [x:y]\ \setminus \ |y| \geq |x| \}$$
- $$X_2:= \{ [x:y]\ \setminus \ |y| \leq |x| \}$$
- We whish to prove that
- $\Big{(}H_1\setminus \Big{ \{ }$$\begin{bmatrix}
- 1 & 0\\
- 0 & 1
- \end{bmatrix}$
- $\Big{\}} \Big{)} \cdot \mathit{X}_2 \subseteq \mathit{X}_2$
- \tdplotsetmaincoords{75}{140}
- \begin{tikzpicture}[scale=2,tdplot_main_coords]
- \draw node at (-1,-0.5,1) {\tiny{The Ping-Pong Lemma}};
- \draw[-,dashed] (0,0,0)--(0,0,-0.6);
- \draw[<->,blue,dashed](-1,0,-0.6) -- (1,0,-0.6) node[blue,below] {$x$};
- \draw[<->,magenta,dashed](0,-1,-0.6) -- (0,1,-0.6) node[magenta,right] {$y$};
- \draw[->,dashed](-1.3,-1.3,0) -- (2,2,0) node[below] {$y=x$};
- \draw[->,dashed](1.2,-1.2,0) -- (-1.5,1.5,0) node[right] {$y=-x$};
- \shade[->,left color=grlow,right color=grlow,opacity=0.5]
- (0,0) -- (-1,1) arc (135:45:1.4142) -- cycle;
- \shade[->,left color=grlow,right color=grlow,opacity=0.5]
- (0,0) -- (1,-1) arc (-45:-135:1.4142) -- cycle;
- \shade[-,left color=orlow,right color=orlow,opacity=0.5]
- (0,0) -- (1,1) arc (45:-45:1.4142) -- cycle;
- \shade[-,left color=orlow, right color=orlow,opacity=0.5]
- (0,0) -- (-1,-1) arc (-135:-225:1.4142) -- cycle;
- \foreach \a in {55,60,...,125}
- {
- \tdplotsinandcos{\costheta}{\sintheta}{\a}
- \draw [<->,opacity=0.5, thick, orange!90!yellow](-1.6*\costheta,-1.6*\sintheta,0) -- (1.7*\costheta, 1.7*\sintheta,0);
- \pgfmathsetmacro{\b}{\a-90}
- \tdplotsinandcos{\costheta}{\sintheta}{\b}
- \draw [<->,opacity=0.5, thick, grlow](-1.6*\costheta,-1.6*\sintheta,0) -- (1.7*\costheta, 1.7*\sintheta,0);
- }
- \draw [->,magenta,thick](0,0.5,0) .. controls(0.5,0.5,1) .. (0.5,0,0)node[grlow]{$\bullet$};
- \draw[above=2pt,magenta]node at (0.5,0.5,0.8){$h_1$};
- \draw [->,blue,thick](-0.8,-0.4,0) .. controls(-0.5,0.5,1) .. (-0.3,0.8,0)node[orlow]{$\bullet$};
- \draw[left=4pt,blue] node at (-0.7,0.7,1){$h_2$};
- \end{tikzpicture}
- \vspace{0.3cm}
- \noindent In fact: $\begin{bmatrix}
- 1 & 2n \\
- 0 & 1
- \end{bmatrix}$
- $ \begin{bmatrix}
- x \\
- y
- \end{bmatrix}$ =
- $ \begin{bmatrix}
- x+2ny \\
- y
- \end{bmatrix} $ and it is verified that:
- \begin{align*}
- |x+2ny| & \geq |2n| |y| - |x|\\
- & \geq |y| + (|y| - |x|)\\
- & \geq |y|
- \end{align*}
- Similarly $\Big{(}H_2 \setminus \Big{ \{ }$$\begin{pmatrix}
- 1 & 0\\
- 0 & 1
- \end{pmatrix}$
- $\Big{\}} \Big{)} \cdot \mathit{X}_1 \subseteq \mathit{X}_2$\\
- \noindent So by Ping - Pong Lemma\\
- $$\Big{\langle}\begin{bmatrix}
- 1 & 2 \\
- 0 & 1
- \end{bmatrix},\ \begin{bmatrix}
- 1 & 2 \\
- 0 & 1
- \end{bmatrix}\Big{\rangle}\ \cong\ H_1 \ast H_2\ \cong\ \mathbb{Z} \ast \mathbb{Z}\ \cong\ \mathit{F}_2 $$
- \subsection*{Proposition}
- $\Big{\langle}\overline{\begin{bmatrix}
- i & 2 \\
- 0 & i
- \end{bmatrix}},\ \overline{\begin{bmatrix}
- 0 & i \\
- -i & 0
- \end{bmatrix}}\Big{\rangle}\ \cong\ \mathbb{Z} \ast \mathbb{Z}\ \big{/}2\ \mathbb{Z}\ $, where $\overline{g} \in \mathrm{PSL}_2(\mathbb{R}) \cong \mathrm{SL}_2(\mathbb{R}) \big{/}\{ \pm I \} $, for $g \in \mathrm{SL}_2(\mathbb{R}).$
- \subsubsection*{Proof:}
- Consider the continuous action on the hyperbolic metric space $\mathbb{H}$, $$\alpha : \mathrm{SL}_2(\mathbb{R}) \times \mathbb{H} \to \mathbb{H}$$
- defined by the rule:
- $$\begin{bmatrix}
- a & b \\
- c & d
- \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$$
- %Here is the place for tikz graph
- \tdplotsetmaincoords{75}{100}
- \begin{tikzpicture}[scale=2,tdplot_main_coords]
- \draw[->,blue,dashed](2,0,0) -- (2.5,0,0) node[blue,below] {$x$};
- \draw[->,magenta,dashed](0,0,0) -- (0,2.3,0) node[magenta,right] {$y$};
- \fill [orlow,opacity=0.5](-1,0,0) arc(180:0:1)(1,0,0) -- cycle;
- \fill [grlow] (-2,0,0)arc(180:0:2)(2,0,0) -- (1,0,0) arc(0:180:1)(-1,0,0) -- cycle ;
- \node [blue,left] at (-1,0,0) {$-1$};
- \node [blue,left] at (1,0,0) {$+1$};
- \node [right] at (-1,1,0.3){$\mathbb{H}$};
- \node at (-0.5,2,0.3)[circle,fill=grlow] {\textcolor{white}{$\mathit{X}_2$}};
- \node at (-1,-0.2,0.3)[circle,fill=orlow, opacity=0.5] {\textcolor{black}{$\mathit{X}_1$}};
- \draw [->, magenta,thick](-0.25,0.5,0) .. controls(-0.5,0.5,0.5) .. (-1.25,1.3,0)node[orlow]{$\bullet$};
- \draw [->, blue,thick](0.4,0.5,0) .. controls(0.5,0.5,0.5) .. (0.75,1.5,0)node[orlow]{$\bullet$};
- \node at (-0.5,0.6,0.6) {\textcolor{magenta}{$h_1$}};
- \node at (1.8,0.6,0.6) {\textcolor{blue}{$h_2$}};
- \end{tikzpicture}
- Observe that this action factors through $\mathrm{PSL}_2(\mathbb{R}).$ Let $H_1 = \Big{\langle}\overline{\begin{bmatrix}
- 0 & i \\
- -i & 0
- \end{bmatrix}}\Big{\rangle}$ and $H_2 = \Big{\langle}\overline{\begin{bmatrix}
- i & 2 \\
- 0 & i
- \end{bmatrix}}\Big{\rangle}$. Observe that $\begin{bmatrix}
- 0 & i \\
- -i & 0
- \end{bmatrix} \cdot z = - \frac{1}{z}$, and $\begin{bmatrix}
- i & 2n \\
- 0 & i
- \end{bmatrix} \cdot z = z - 2ni$, and so:\\
- $$\Big{(} H_1 \setminus \Big{ \{ } \overline{
- \begin{bmatrix}
- 1 & 0 \\
- 0 & 1
- \end{bmatrix}} \Big{ \} } \cdot \mathit{X_2} \subseteq \mathit{X_1} $$
- $$\Big{(} H_2 \setminus \Big{ \{ } \overline{
- \begin{bmatrix}
- 1 & 0 \\
- 0 & 1
- \end{bmatrix}} \Big{ \} } \cdot \mathit{X_1} \subseteq \mathit{X_2} $$
- Therefore by Ping-Pong Lemma:
- $$\Big{\langle}\overline{\begin{bmatrix}
- i & 2 \\
- 0 & i
- \end{bmatrix}},\ \overline{\begin{bmatrix}
- 0 & i \\
- -i & 0
- \end{bmatrix}}\Big{\rangle}\ \cong\ \mathbb{Z} \ast \mathbb{Z}\ \big{/}2\ \mathbb{Z}\ $$
- %\end{landscape}
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement