Advertisement
nm9505

Ping-Pong Lemma

Feb 11th, 2025
54
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 7.69 KB | Science | 0 0
  1. \documentclass{article}[pstricks,border=8pt,12pt]
  2. \usepackage[utf8]{inputenc}
  3.  
  4. \usepackage{geometry} [a4paper,lmargin=1.5cm,rmargin=1.5cm,Botton=1.5cm,top=1.5cm]
  5. \usepackage{ifthen}
  6. \usepackage{graphicx} \usepackage{wrapfig} \usepackage{color} \usepackage{amsmath} \usepackage[T1]{fontenc} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{cancel} \usepackage[all]{xy} \usepackage{pstricks}
  7. \usepackage{pst-pdf}
  8.  
  9. \usepackage{pst-all}
  10. \usepackage{fancybox} \usepackage{tikz} \usepackage{tikz-3dplot}
  11. \usepackage{gnuplottex}
  12.  
  13.  
  14. \tikzset{flippedeventlabel/.append style={align=center}} \usetikzlibrary{matrix.skeleton} \usetikzlibrary[shapes,arrows,positioning,fit,backgrounds,intersections,shadows,calc,shadings] \usetikzlibrary{positioning} \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.pathmorphing} \pgfdeclarelayer{background layer} \pgfdeclarelayer{foreground layer} \pgfsetlayers{background layer,main,foreground layer}
  15. \usetikzlibrary{datavisualization.formats.functions}
  16. \usepackage{pgf-pie}
  17. \usepackage{color,colortbl} \usepackage{lscape} \usepackage{pgfplots} \pgfplotsset{compat=newest} \usetikzlibrary{datavisualization} \usetikzlibrary[shapes,arrows.meta,positioning,fit,backgrounds,intersections,shadows,calc,datavisualization.formats.functions]
  18. \usetikzlibrary{patterns} \usepackage[colorlinks=true,linkcolor=black,citecolor=black,filecolor=magenta,urlcolor=blue]{hyperref} %Paquete de estilo de referencias
  19. \urlstyle{same}  
  20. \date{\today}
  21. % Start the document
  22. \begin{document}
  23. %\pagecolor{black}
  24. % Definición local de colores
  25. %\colorlet{greenlow}{green!50!black}
  26. \colorlet{grlow}{green!60!blue}
  27. \colorlet{orlow}{orange!80!red}
  28.  
  29. %\begin{landscape}
  30. \section*{Example:}
  31. \qquad Let
  32. $A = \begin{bmatrix}
  33. 1 & 2 \\
  34. 0 & 1
  35. \end{bmatrix}$
  36. and
  37. $B = \begin{bmatrix}
  38. 1 & 0 \\
  39. 2 & 1
  40. \end{bmatrix}$
  41. freely generated a subgroup of $SL_2(\mathbb{Z}).$\\
  42. \vspace{0.3cm}
  43.  
  44. \noindent Let $H_1:= \Big{\langle}\begin{bmatrix}
  45. 1 & 2 \\
  46. 0 & 1
  47. \end{bmatrix}\Big{\rangle} $
  48. $= \Big{\{}\begin{bmatrix}
  49. 1 & 2n \\
  50. 0 & 1
  51. \end{bmatrix}$ $\setminus \  n \in \mathbb{Z}\Big{\}}$ and
  52. $H_2:= \Big{\langle}\begin{bmatrix}
  53. 1 & 0 \\
  54. 2 & 1
  55. \end{bmatrix}\Big{\rangle} $
  56. $= \Big{\{}\begin{bmatrix}
  57. 1 & 0\\
  58. 2n & 1
  59. \end{bmatrix}$ $\setminus \  n \in \mathbb{Z}\Big{\}}.$ \\
  60. \vspace{0.3cm}
  61.  
  62. \noindent Consider the action of $SL_2(\mathbb{Z}).$ on the projectiv $SL_2(\mathbb{Z}) \cap \mathbb{P}(\mathbb{R}^2)$ and the disjoint sets of $\mathbb{P}(\mathbb{R}^2)$
  63. $$X_1:= \{ [x:y]\ \setminus \ |y| \geq |x| \}$$
  64. $$X_2:= \{ [x:y]\ \setminus \ |y| \leq |x| \}$$
  65. We whish to prove that
  66. $\Big{(}H_1\setminus \Big{ \{ }$$\begin{bmatrix}
  67. 1 & 0\\
  68. 0 & 1
  69. \end{bmatrix}$
  70. $\Big{\}} \Big{)} \cdot \mathit{X}_2 \subseteq \mathit{X}_2$
  71. \tdplotsetmaincoords{75}{140}
  72. \begin{tikzpicture}[scale=2,tdplot_main_coords]
  73. \draw node at (-1,-0.5,1) {\tiny{The Ping-Pong Lemma}};
  74. \draw[-,dashed] (0,0,0)--(0,0,-0.6);
  75. \draw[<->,blue,dashed](-1,0,-0.6) -- (1,0,-0.6) node[blue,below] {$x$};
  76. \draw[<->,magenta,dashed](0,-1,-0.6) -- (0,1,-0.6) node[magenta,right] {$y$};
  77. \draw[->,dashed](-1.3,-1.3,0) -- (2,2,0) node[below] {$y=x$};
  78. \draw[->,dashed](1.2,-1.2,0) -- (-1.5,1.5,0) node[right] {$y=-x$};
  79. \shade[->,left color=grlow,right color=grlow,opacity=0.5]
  80. (0,0) -- (-1,1) arc (135:45:1.4142) -- cycle;
  81. \shade[->,left color=grlow,right color=grlow,opacity=0.5]
  82. (0,0) -- (1,-1) arc (-45:-135:1.4142) -- cycle;
  83. \shade[-,left color=orlow,right color=orlow,opacity=0.5]
  84. (0,0) -- (1,1) arc (45:-45:1.4142) -- cycle;
  85. \shade[-,left color=orlow, right color=orlow,opacity=0.5]
  86. (0,0) -- (-1,-1) arc (-135:-225:1.4142) -- cycle;
  87. \foreach \a in {55,60,...,125}
  88. {
  89. \tdplotsinandcos{\costheta}{\sintheta}{\a}
  90. \draw [<->,opacity=0.5, thick, orange!90!yellow](-1.6*\costheta,-1.6*\sintheta,0) -- (1.7*\costheta, 1.7*\sintheta,0);
  91. \pgfmathsetmacro{\b}{\a-90}
  92. \tdplotsinandcos{\costheta}{\sintheta}{\b}
  93. \draw [<->,opacity=0.5, thick, grlow](-1.6*\costheta,-1.6*\sintheta,0) -- (1.7*\costheta, 1.7*\sintheta,0);
  94. }
  95.  
  96. \draw [->,magenta,thick](0,0.5,0) .. controls(0.5,0.5,1) .. (0.5,0,0)node[grlow]{$\bullet$};
  97. \draw[above=2pt,magenta]node at (0.5,0.5,0.8){$h_1$};
  98. \draw [->,blue,thick](-0.8,-0.4,0) .. controls(-0.5,0.5,1) .. (-0.3,0.8,0)node[orlow]{$\bullet$};
  99. \draw[left=4pt,blue] node at (-0.7,0.7,1){$h_2$};
  100. \end{tikzpicture}
  101. \vspace{0.3cm}
  102.  
  103. \noindent In fact: $\begin{bmatrix}
  104. 1 & 2n \\
  105. 0 & 1
  106. \end{bmatrix}$
  107. $ \begin{bmatrix}
  108. x \\
  109. y  
  110. \end{bmatrix}$ =
  111. $ \begin{bmatrix}
  112. x+2ny \\
  113. y  
  114. \end{bmatrix} $ and it is verified that:
  115. \begin{align*}
  116. |x+2ny| & \geq |2n| |y| - |x|\\
  117. & \geq |y| + (|y| - |x|)\\
  118. & \geq |y|
  119. \end{align*}
  120. Similarly $\Big{(}H_2 \setminus \Big{ \{ }$$\begin{pmatrix}
  121. 1 & 0\\
  122. 0 & 1
  123. \end{pmatrix}$
  124. $\Big{\}} \Big{)} \cdot \mathit{X}_1 \subseteq \mathit{X}_2$\\
  125.  
  126. \noindent So by Ping - Pong Lemma\\
  127.  
  128. $$\Big{\langle}\begin{bmatrix}
  129. 1 & 2 \\
  130. 0 & 1
  131. \end{bmatrix},\  \begin{bmatrix}
  132. 1 & 2 \\
  133. 0 & 1
  134. \end{bmatrix}\Big{\rangle}\ \cong\   H_1 \ast H_2\  \cong\  \mathbb{Z} \ast \mathbb{Z}\  \cong\  \mathit{F}_2 $$
  135. \subsection*{Proposition}
  136. $\Big{\langle}\overline{\begin{bmatrix}
  137. i & 2 \\
  138. 0 & i
  139. \end{bmatrix}},\  \overline{\begin{bmatrix}
  140. 0 & i \\
  141. -i & 0
  142. \end{bmatrix}}\Big{\rangle}\ \cong\   \mathbb{Z} \ast \mathbb{Z}\ \big{/}2\  \mathbb{Z}\ $, where $\overline{g} \in \mathrm{PSL}_2(\mathbb{R}) \cong \mathrm{SL}_2(\mathbb{R}) \big{/}\{ \pm I \} $, for $g \in \mathrm{SL}_2(\mathbb{R}).$
  143. \subsubsection*{Proof:}
  144. Consider the continuous action on the hyperbolic metric space $\mathbb{H}$, $$\alpha : \mathrm{SL}_2(\mathbb{R}) \times \mathbb{H} \to \mathbb{H}$$
  145. defined by the rule:
  146. $$\begin{bmatrix}
  147. a & b \\
  148. c & d
  149. \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$$
  150. %Here is the place for tikz graph
  151. \tdplotsetmaincoords{75}{100}
  152. \begin{tikzpicture}[scale=2,tdplot_main_coords]
  153.  
  154. \draw[->,blue,dashed](2,0,0) -- (2.5,0,0) node[blue,below] {$x$};
  155. \draw[->,magenta,dashed](0,0,0) -- (0,2.3,0) node[magenta,right] {$y$};
  156. \fill [orlow,opacity=0.5](-1,0,0) arc(180:0:1)(1,0,0) -- cycle;
  157. \fill [grlow] (-2,0,0)arc(180:0:2)(2,0,0)  -- (1,0,0) arc(0:180:1)(-1,0,0)  --  cycle ;
  158. \node [blue,left] at (-1,0,0) {$-1$};
  159. \node [blue,left] at (1,0,0) {$+1$};
  160. \node [right] at (-1,1,0.3){$\mathbb{H}$};
  161. \node at (-0.5,2,0.3)[circle,fill=grlow] {\textcolor{white}{$\mathit{X}_2$}};
  162. \node at (-1,-0.2,0.3)[circle,fill=orlow, opacity=0.5] {\textcolor{black}{$\mathit{X}_1$}};
  163. \draw [->, magenta,thick](-0.25,0.5,0) .. controls(-0.5,0.5,0.5) .. (-1.25,1.3,0)node[orlow]{$\bullet$};
  164. \draw [->, blue,thick](0.4,0.5,0) .. controls(0.5,0.5,0.5) .. (0.75,1.5,0)node[orlow]{$\bullet$};
  165. \node at (-0.5,0.6,0.6) {\textcolor{magenta}{$h_1$}};
  166. \node at (1.8,0.6,0.6) {\textcolor{blue}{$h_2$}};
  167. \end{tikzpicture}
  168.  
  169. Observe that this action factors through $\mathrm{PSL}_2(\mathbb{R}).$ Let $H_1 = \Big{\langle}\overline{\begin{bmatrix}
  170. 0 & i \\
  171. -i & 0
  172. \end{bmatrix}}\Big{\rangle}$ and $H_2 = \Big{\langle}\overline{\begin{bmatrix}
  173. i & 2 \\
  174. 0 & i
  175. \end{bmatrix}}\Big{\rangle}$. Observe that $\begin{bmatrix}
  176. 0 & i \\
  177. -i & 0
  178. \end{bmatrix} \cdot z = - \frac{1}{z}$, and $\begin{bmatrix}
  179. i & 2n \\
  180. 0 & i
  181. \end{bmatrix} \cdot z = z - 2ni$, and so:\\
  182.  
  183. $$\Big{(} H_1 \setminus \Big{ \{ } \overline{
  184. \begin{bmatrix}
  185. 1 & 0 \\
  186. 0 & 1
  187. \end{bmatrix}} \Big{ \} } \cdot \mathit{X_2} \subseteq \mathit{X_1} $$
  188. $$\Big{(} H_2 \setminus \Big{ \{ } \overline{
  189. \begin{bmatrix}
  190. 1 & 0 \\
  191. 0 & 1
  192. \end{bmatrix}} \Big{ \} } \cdot \mathit{X_1} \subseteq \mathit{X_2} $$
  193. Therefore by Ping-Pong Lemma:
  194. $$\Big{\langle}\overline{\begin{bmatrix}
  195. i & 2 \\
  196. 0 & i
  197. \end{bmatrix}},\  \overline{\begin{bmatrix}
  198. 0 & i \\
  199. -i & 0
  200. \end{bmatrix}}\Big{\rangle}\ \cong\   \mathbb{Z} \ast \mathbb{Z}\ \big{/}2\  \mathbb{Z}\ $$
  201.  
  202.  
  203.  
  204. %\end{landscape}
  205. \end{document}
  206.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement