Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- np.set_printoptions(precision=3,suppress=True,floatmode='fixed')
- Rx = np.matrix([[1,0,0],
- [0,np.cos(90*np.pi/180),-np.sin(90*np.pi/180)],
- [0,np.sin(90*np.pi/180),np.cos(90*np.pi/180)]])
- print("Matrix 1:\n", Rx)
- Ry= np.matrix([[np.cos(45*np.pi/180),0,np.sin(45*np.pi/180)],
- [0,1,0],
- [-np.sin(45*np.pi/180),0,np.cos(45*np.pi/180)]])
- print("Matrix 2:\n", Ry)
- Rz = np.matrix([[np.cos(120*np.pi/180),-np.sin(120*np.pi/180),0],
- [np.sin(120*np.pi/180),np.cos(120*np.pi/180),0],
- [0,0,1]])
- print("Matrix 3:\n", Rz)
- R=Rz*Rx
- print("Matrix Answer :\n", R)
- XW=np.arccos(R[0,2])
- print("Matrix XW : ",XW*180/np.pi)
- P2=np.matrix([[1],[2],[1]])
- P1=R*P2
- print("Matrix P1 :\n", P1)
- px,py,pz=P1[0,0],P1[1,0],P1[2,0]
- absP=np.sqrt(px**2+py**2+pz**2)
- uniteP1=P1/absP
- print("Matrix absP:\n", absP)
- print("Matrix uniteP1:\n", uniteP1)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement