Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- https://imgur.com/a/Pl1x0D0
- négyzetesen konvergáló módszer az newton
- ------------------------------------------------------------------------------------------
- function x = LTriangSolve(a,b)
- n = length(b);
- x(1,1) = b(1)/a(1,1);
- for i = 2:n
- x(i,1)=(b(i)-a(i,1:i-1)*x(1:i-1,1))./a(i,i);
- end
- ------------------------------------------------------------------------------------------
- function [invMtx] = I3(A)
- %simetrikus, hatekony modszer a Cholesky
- L = Cholesky(A);
- b = [1;0;0];
- y = LTriangSolve(L,b);
- a1 = UTriangSolve(L',y);
- b = [0;1;0];
- y = LTriangSolve(L,b);
- a2 = UTriangSolve(L',y);
- b = [0;0;1];
- y = LTriangSolve(L,b);
- a3 = UTriangSolve(L',y);
- Mtx = A
- invMtx = [a1;a2;a3]
- end
- ------------------------------------------------------------------------------------------
- function [sqrt] = II9 (a,maxit)
- tic
- %sqrt(a) = x |^2
- f = @(x) x^2 - a;
- fd = @(x) 2*x;
- fplot(f,[-a/2,a/2]);
- hold on;
- %Olyan kezdoerteket kell valasztanunk, aminek a negyzete nagyobb a
- %szamunknal (gy�k nem lehet negativ)
- [koz,n] = Newton_Raphson(f,fd,a/2,1/10000,maxit);
- sqrt = koz(n);
- toc
- end
- ------------------------------------------------------------------------------------------
- % Adott A es B matrix. Megoldjuk A , b (B oszlop) egyenleteket Gaussal es LU-val.
- % Futasi idok tesztelese, melyik gyorsabb?
- function M_1()
- A = [1,0,3; 2,4,5;9,1,3];
- B = [1,1,1; 0,2,3; 4,5,2];
- n = length(B(1,:));
- for i= 1:n
- tic
- GaussElimSolve(A,B(:,i))
- toc
- tic
- [L,U,P] = L4_lup(A);
- y = UTriangSolve(U,B(:,i))
- toc
- endfor
- % Az LU felbontas gyorsabb.
- end
- ------------------------------------------------------------------------------------------
- function M_1()
- f = @(x) sin(x).^2;
- a = 0;
- b = pi;
- integral = L10_romberg(f,a,b,0.001,15);
- V = pi*integral
- end
- ------------------------------------------------------------------------------------------
- % Szamitsuk ki Gauss eliminacioval egy matrix inverzet.
- function [I] = M_1(A)
- b = [1;0;0];
- [U1,c1] = GaussElim(A,b);
- x1 = UTriangSolve(U1,c1);
- b = [0;1;0];
- [U2,c2] = GaussElim(A,b);
- x2 = UTriangSolve(U2,c2);
- b = [0;0;1];
- [U3,c3] = GaussElim(A,b);
- x3 = UTriangSolve(U3,c3);
- I = [x1;x2;x3];
- I = I'
- end
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement