Advertisement
GerexD

ltrinang

Jan 7th, 2022 (edited)
59
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.40 KB | None | 0 0
  1. https://imgur.com/a/Pl1x0D0
  2. négyzetesen konvergáló módszer az newton
  3. ------------------------------------------------------------------------------------------
  4. function x = LTriangSolve(a,b)
  5. n = length(b);
  6. x(1,1) = b(1)/a(1,1);
  7. for i = 2:n
  8. x(i,1)=(b(i)-a(i,1:i-1)*x(1:i-1,1))./a(i,i);
  9. end
  10. ------------------------------------------------------------------------------------------
  11. function [invMtx] = I3(A)
  12.  
  13. %simetrikus, hatekony modszer a Cholesky
  14. L = Cholesky(A);
  15.  
  16. b = [1;0;0];
  17. y = LTriangSolve(L,b);
  18. a1 = UTriangSolve(L',y);
  19.  
  20. b = [0;1;0];
  21. y = LTriangSolve(L,b);
  22. a2 = UTriangSolve(L',y);
  23.  
  24. b = [0;0;1];
  25. y = LTriangSolve(L,b);
  26. a3 = UTriangSolve(L',y);
  27.  
  28. Mtx = A
  29. invMtx = [a1;a2;a3]
  30. end
  31. ------------------------------------------------------------------------------------------
  32. function [sqrt] = II9 (a,maxit)
  33. tic
  34. %sqrt(a) = x |^2
  35. f = @(x) x^2 - a;
  36. fd = @(x) 2*x;
  37. fplot(f,[-a/2,a/2]);
  38. hold on;
  39.  
  40. %Olyan kezdoerteket kell valasztanunk, aminek a negyzete nagyobb a
  41. %szamunknal (gy�k nem lehet negativ)
  42.  
  43. [koz,n] = Newton_Raphson(f,fd,a/2,1/10000,maxit);
  44. sqrt = koz(n);
  45. toc
  46. end
  47. ------------------------------------------------------------------------------------------
  48. % Adott A es B matrix. Megoldjuk A , b (B oszlop) egyenleteket Gaussal es LU-val.
  49. % Futasi idok tesztelese, melyik gyorsabb?
  50.  
  51. function M_1()
  52. A = [1,0,3; 2,4,5;9,1,3];
  53. B = [1,1,1; 0,2,3; 4,5,2];
  54.  
  55. n = length(B(1,:));
  56.  
  57. for i= 1:n
  58. tic
  59. GaussElimSolve(A,B(:,i))
  60. toc
  61. tic
  62. [L,U,P] = L4_lup(A);
  63. y = UTriangSolve(U,B(:,i))
  64. toc
  65.  
  66. endfor
  67. % Az LU felbontas gyorsabb.
  68.  
  69. end
  70. ------------------------------------------------------------------------------------------
  71. function M_1()
  72. f = @(x) sin(x).^2;
  73. a = 0;
  74. b = pi;
  75.  
  76. integral = L10_romberg(f,a,b,0.001,15);
  77. V = pi*integral
  78. end
  79.  
  80. ------------------------------------------------------------------------------------------
  81. % Szamitsuk ki Gauss eliminacioval egy matrix inverzet.
  82. function [I] = M_1(A)
  83. b = [1;0;0];
  84. [U1,c1] = GaussElim(A,b);
  85. x1 = UTriangSolve(U1,c1);
  86.  
  87. b = [0;1;0];
  88. [U2,c2] = GaussElim(A,b);
  89. x2 = UTriangSolve(U2,c2);
  90.  
  91. b = [0;0;1];
  92. [U3,c3] = GaussElim(A,b);
  93. x3 = UTriangSolve(U3,c3);
  94.  
  95.  
  96. I = [x1;x2;x3];
  97. I = I'
  98.  
  99. end
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement