Guest User

Untitled

a guest
Dec 22nd, 2018
32
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.95 KB | None | 0 0
  1. \documentclass[10pt,aspectratio=169]{beamer}
  2. %\usetheme{Rochester}
  3. \usepackage{enumitem}
  4. \setbeamertemplate{navigation symbols}{}
  5. \useinnertheme[shadow]{rounded}
  6. \newcommand{\AND}{%
  7. % \leaders\hrule height 1.5ex
  8. \hskip\fontdimen2\font plus \fontdimen3\font minus \fontdimen4\font
  9.  
  10. }
  11.  
  12. \newenvironment{showspaces}
  13. {\par\obeyspaces
  14. \begingroup\lccode`\~=`\ \lowercase{\endgroup\let~}\AND
  15. % \begingroup\lccode`\~=`\^^M\lowercase{\endgroup\let~}\AND
  16. }
  17. {\par}
  18. \begin{document}
  19. \setbeamercolor{background canvas}{bg=violet!50}
  20. \small
  21. \begin{frame}[fragile]
  22. \vspace{-.2cm}
  23. % \begin{showspaces}
  24. \begin{block}{}
  25.  
  26. Let $R$ denote the radius of convergence of the power series $\sum\limits_{k=1}^\infty kx^k$. Then
  27.  
  28. \begin{enumerate}[topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex,label=(\arabic*)]
  29. \item $R>0$ and the series is convergent on $[-R,R]$
  30. \item $R>0$ and the series converges at $x=-R$ but does not converge at $x=R$
  31. \item $R>0$ and the series does not converge outside $(-R,R)$.
  32. \item $R=0$
  33. \end{enumerate}
  34. \end{block}
  35. {\bf{Answer}} \\
  36. We have the radius of convergence $R=\displaystyle \lim_{k\to \infty}\frac{a_k}{a_{k+1}} =\lim_{k\to \infty}\frac{k}{{k+1}} =\lim_{k\to \infty}\frac{1}{{1+\frac{1}{k}}} =1.$\\
  37. Hence \textit{(4)} is wrong.\\
  38. For $x=R=1$, $\displaystyle \sum k x^k=\sum k$, is divergent. \\ Hence \textit{(1)} is wrong.\\
  39. For $x=-R=-1$, \\ $\displaystyle \sum k x^k=\sum k (-1)^k =-1+2-3+4\cdots =(-1+2)+(-3+4)+(-5+6)+\cdots =-1-1-1-\cdots$
  40. \\
  41. Hence $\displaystyle \sum k (-1)^k$ is divergent.
  42. \\Therefore \textit{(2)} is wrong.\\
  43. Also, since $R=1 >0$, by the property of radius of convergence, the series does not converge outside $(-R,R)$.\\
  44. Hence \textit{(3)} is correct.
  45. % \end{showspaces}
  46. \end{frame}
  47. \end{document}
Add Comment
Please, Sign In to add comment