Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass[10pt,aspectratio=169]{beamer}
- %\usetheme{Rochester}
- \usepackage{enumitem}
- \setbeamertemplate{navigation symbols}{}
- \useinnertheme[shadow]{rounded}
- \newcommand{\AND}{%
- % \leaders\hrule height 1.5ex
- \hskip\fontdimen2\font plus \fontdimen3\font minus \fontdimen4\font
- }
- \newenvironment{showspaces}
- {\par\obeyspaces
- \begingroup\lccode`\~=`\ \lowercase{\endgroup\let~}\AND
- % \begingroup\lccode`\~=`\^^M\lowercase{\endgroup\let~}\AND
- }
- {\par}
- \begin{document}
- \setbeamercolor{background canvas}{bg=violet!50}
- \small
- \begin{frame}[fragile]
- \vspace{-.2cm}
- % \begin{showspaces}
- \begin{block}{}
- Let $R$ denote the radius of convergence of the power series $\sum\limits_{k=1}^\infty kx^k$. Then
- \begin{enumerate}[topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex,label=(\arabic*)]
- \item $R>0$ and the series is convergent on $[-R,R]$
- \item $R>0$ and the series converges at $x=-R$ but does not converge at $x=R$
- \item $R>0$ and the series does not converge outside $(-R,R)$.
- \item $R=0$
- \end{enumerate}
- \end{block}
- {\bf{Answer}} \\
- We have the radius of convergence $R=\displaystyle \lim_{k\to \infty}\frac{a_k}{a_{k+1}} =\lim_{k\to \infty}\frac{k}{{k+1}} =\lim_{k\to \infty}\frac{1}{{1+\frac{1}{k}}} =1.$\\
- Hence \textit{(4)} is wrong.\\
- For $x=R=1$, $\displaystyle \sum k x^k=\sum k$, is divergent. \\ Hence \textit{(1)} is wrong.\\
- For $x=-R=-1$, \\ $\displaystyle \sum k x^k=\sum k (-1)^k =-1+2-3+4\cdots =(-1+2)+(-3+4)+(-5+6)+\cdots =-1-1-1-\cdots$
- \\
- Hence $\displaystyle \sum k (-1)^k$ is divergent.
- \\Therefore \textit{(2)} is wrong.\\
- Also, since $R=1 >0$, by the property of radius of convergence, the series does not converge outside $(-R,R)$.\\
- Hence \textit{(3)} is correct.
- % \end{showspaces}
- \end{frame}
- \end{document}
Add Comment
Please, Sign In to add comment