Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ValueError Traceback (most recent call last)
- <ipython-input-226-02cf30bd9f21> in <module>()
- 38 gsearch_gbc = GridSearchCV(estimator = GradientBoostingClassifier(n_estimators=10),
- 39 param_grid = param_test, scoring="neg_log_loss", n_jobs=1, iid=False, cv=cv_indices)
- ---> 40 gsearch_gbc.fit(df_attr, Se_targets)
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups)
- 943 train/test set.
- 944 """
- --> 945 return self._fit(X, y, groups, ParameterGrid(self.param_grid))
- 946
- 947
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/model_selection/_search.py in _fit(self, X, y, groups, parameter_iterable)
- 562 return_times=True, return_parameters=True,
- 563 error_score=self.error_score)
- --> 564 for parameters in parameter_iterable
- 565 for train, test in cv_iter)
- 566
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
- 756 # was dispatched. In particular this covers the edge
- 757 # case of Parallel used with an exhausted iterator.
- --> 758 while self.dispatch_one_batch(iterator):
- 759 self._iterating = True
- 760 else:
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
- 606 return False
- 607 else:
- --> 608 self._dispatch(tasks)
- 609 return True
- 610
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
- 569 dispatch_timestamp = time.time()
- 570 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
- --> 571 job = self._backend.apply_async(batch, callback=cb)
- 572 self._jobs.append(job)
- 573
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
- 107 def apply_async(self, func, callback=None):
- 108 """Schedule a func to be run"""
- --> 109 result = ImmediateResult(func)
- 110 if callback:
- 111 callback(result)
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
- 324 # Don't delay the application, to avoid keeping the input
- 325 # arguments in memory
- --> 326 self.results = batch()
- 327
- 328 def get(self):
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- 132
- 133 def __len__(self):
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- 132
- 133 def __len__(self):
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
- 258 else:
- 259 fit_time = time.time() - start_time
- --> 260 test_score = _score(estimator, X_test, y_test, scorer)
- 261 score_time = time.time() - start_time - fit_time
- 262 if return_train_score:
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _score(estimator, X_test, y_test, scorer)
- 286 score = scorer(estimator, X_test)
- 287 else:
- --> 288 score = scorer(estimator, X_test, y_test)
- 289 if hasattr(score, 'item'):
- 290 try:
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/metrics/scorer.py in __call__(self, clf, X, y, sample_weight)
- 132 **self._kwargs)
- 133 else:
- --> 134 return self._sign * self._score_func(y, y_pred, **self._kwargs)
- 135
- 136 def _factory_args(self):
- /Users/jespinoz/anaconda/lib/python3.6/site-packages/sklearn/metrics/classification.py in log_loss(y_true, y_pred, eps, normalize, sample_weight, labels)
- 1620 raise ValueError('y_true contains only one label ({0}). Please '
- 1621 'provide the true labels explicitly through the '
- -> 1622 'labels argument.'.format(lb.classes_[0]))
- 1623 else:
- 1624 raise ValueError('The labels array needs to contain at least two '
- ValueError: y_true contains only one label (1). Please provide the true labels explicitly through the labels argument.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement