Advertisement
MatsGranvik

Gary OEIS recurrence

Jul 29th, 2021
217
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.95 KB | None | 0 0
  1. (*program 1 start*)Clear[nn, t, n, k, c];
  2. nn = 60;
  3. c = 0;
  4. t[n_, 1] = If[n >= 1, n, 0];
  5. t[1, k_] = If[k >= 1, k, 0];
  6. t[n_, k_] :=
  7. t[n, k] =
  8. If[And[n > 1, k > 1],
  9. If[n > k, t[n, k - 1] - t[n - k, k - 1] + t[n - k + c, k],
  10. t[k, n - 1] - t[k - n, n - 1] + t[k - n + c, n]], 0];
  11. TableForm[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]];
  12. a = Flatten[Table[t[n, n], {n, 1, nn}]]
  13. Differences[%]
  14. ListLinePlot[a]
  15. (*=Dirichlet inverse of Euler totient*)
  16. (*program 1 end*)
  17.  
  18. (*program 2 start*)
  19. Clear[nn, t, n, k, c];
  20. nn = 60;
  21. c = 1;
  22. t[n_, 1] = If[n >= 1, n, 0];
  23. t[1, k_] = If[k >= 1, k, 0];
  24. t[n_, k_] :=
  25. t[n, k] =
  26. If[And[n > 1, k > 1],
  27. If[n > k, t[n, k - 1] - t[n - k, k - 1] + t[n - k + c, k],
  28. t[k, n - 1] - t[k - n, n - 1] + t[k - n + c, n]], 0];
  29. TableForm[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]];
  30. b = Table[t[n, n], {n, 1, nn}]
  31. ListLinePlot[b]
  32. Differences[b]
  33. (*=The square numbers*)
  34. (*program 2 end*)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement