Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import os
- import six.moves.urllib as urllib
- import sys
- import tarfile
- import tensorflow as tf
- import zipfile
- import datetime
- from collections import defaultdict
- from io import StringIO
- from matplotlib import pyplot as plt
- from PIL import Image
- from utils import label_map_util
- from EmailSender import SendEmail
- sys.path.insert(0,r'C:\darknet')
- from darknet import *
- from utils import visualization_utils as vis_util
- import cv2
- def AccidentDetector(videofile):
- cap = cv2.VideoCapture(videofile)
- #MODEL_NAME = 'Accident_Detection25487-resnet'
- MODEL_NAME = 'Accident_Detection42214-resnet'
- #MODEL_NAME = 'Accident_Detection200000'
- MODEL_FILE = MODEL_NAME + '.tar.gz'
- DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
- PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
- PATH_TO_LABELS = os.path.join('data', 'object-detection.pbtxt')
- NUM_CLASSES = 2
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
- PATH_TO_TEST_IMAGES_DIR = 'test_images'
- TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
- IMAGE_SIZE = (12, 8)
- check=0
- count=0
- prevdate=datetime.datetime.now()
- #currdate=datetime.datetime.now()
- with detection_graph.as_default():
- with tf.Session(graph=detection_graph) as sess:
- while True:
- ret, image_np = cap.read()
- imageOrg=image_np
- image_np_expanded = np.expand_dims(image_np, axis=0)
- image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
- boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
- scores = detection_graph.get_tensor_by_name('detection_scores:0')
- classes = detection_graph.get_tensor_by_name('detection_classes:0')
- num_detections = detection_graph.get_tensor_by_name('num_detections:0')
- (boxes, scores, classes, num_detections) = sess.run(
- [boxes, scores, classes, num_detections],
- feed_dict={image_tensor: image_np_expanded})
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- np.squeeze(boxes),
- np.squeeze(classes).astype(np.int32),
- np.squeeze(scores),
- category_index,
- use_normalized_coordinates=True,
- line_thickness=8)
- for index,value in enumerate(classes[0]):
- if scores[0,index] > 0.5:
- list1 = [[category_index.get(value)]]
- for i in list1:
- for j in i:
- if j['name'] == 'accident':
- if(check == 0):
- check=1
- #SendEmail(currdate)
- ts = datetime.datetime.now().timestamp()
- file = "detections\\"+str(ts)+".jpg"
- cv2.imwrite(file,imageOrg)
- # 1576044803.3581
- data,check = performDetect(imagePath=file)
- print(data,check)
- #name = "detections/frame%d.jpg"%count
- count = count + 1
- cv2.imshow(videofile[0], cv2.resize(image_np, (600,600)))
- if cv2.waitKey(20) & 0xFF == ord('n'):
- current = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
- print(current)
- cap.set(cv2.CAP_PROP_POS_FRAMES,current+50)
- if cv2.waitKey(20) & 0xFF == ord('p'):
- current = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
- print(current)
- cap.set(cv2.CAP_PROP_POS_FRAMES,current-50)
- if cv2.waitKey(20) & 0xFF == ord('q'):
- cv2.destroyAllWindows()
- break
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement