Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- def build_generator_face(latent_dim=128*7*7, channels=3, face_sequence=True):
- model = Sequential()
- model.add(Dense(128 * 7 * 7, activation="relu", input_shape=(None, latent_dim)))
- model.add(Reshape((7, 7, 128)))
- model.add(UpSampling2D())
- model.add(Conv2D(128, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- model.add(UpSampling2D())
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- if face_sequence == False:
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- else:
- model.add(UpSampling2D(size=(1, 2)))
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- # go from 56 to 35 and continue upsampling
- model.add(Reshape((-1,3), input_shape=(28,56,3)))
- model.add(Lambda(lambda x: x[:2940]))
- model.add(Reshape((28,35,3)))
- model.add(UpSampling2D(size=(1, 2)))
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- model.add(UpSampling2D(size=(1, 2)))
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- model.add(UpSampling2D(size=(1, 2)))
- model.add(Conv2D(64, kernel_size=4, padding="same"))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Activation("relu"))
- model.add(Conv2D(channels, kernel_size=4, padding="same"))
- model.add(Activation("tanh"))
- model.summary()
- build_generator_face()
Advertisement
Add Comment
Please, Sign In to add comment