Guest User

Untitled

a guest
Aug 17th, 2021
189
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.96 KB | None | 0 0
  1. \\Header
  2. PA1 ∀k∈N ∃m∈N ( k = m·2 ∨ k = m·2+1 )
  3. PA1* ∀k,m ∈ N (k = 2m -> ¬∃n ∈ N (k = 2n+1)) \\modified PA1
  4. P1 Z ∈ set
  5. P2 φ is a property with two parameters and ∀x∀y: φ(x,y) <-> ∃z∈N [(x=2z ^ y=z) v (x=2z+1 ^ y=-z)]
  6. P3 y ∈ {x : ψ(x)} <-> ψ(y)
  7. P4 N ⊆ Z
  8.  
  9. \\Prove F := {⟨x,y⟩:x∈N ^ y ∈ Z ^ φ(x,y)} is a set in P(N x Z)
  10. 1 N x Z ∈ set \\from P1, **naturals**, **product-type**
  11. 2 F = {p: p ∈ N x Z ^ ∃n ∈ N ∃z ∈ Z (p = ⟨n,z⟩ ^ φ(n,z))} ∈ set \\from **comprehension**
  12. 3 p ∈ F <-> p ∈ N x Z \\from 3, P3
  13. 4 F ⊆ N x Z
  14. 5 F ∈ P(N x Z)
  15.  
  16. \\Prove ∀n ∈ N: ∃x ∈ F ∃z ∈ Z: x = ⟨n, z⟩
  17. 6 Given n ∈ N:
  18. 7 m := n = 2m ∨ n = 2m+1 \\from PA1
  19. 8 m ∈ Z \\from P4
  20. 9 If n = 2m:
  21. 10 ∃z ∈ N (n = 2z ^ m = z)
  22. 11 φ(n, m) = ∃z∈N [(n=2z ^ m=z) v (n=2z+1 ^ m=-z)] = T
  23. 12 n ∈ N ^ m ∈ Z ^ ⟨n,m⟩ ∈ N x Z ^ φ(n,m)=T
  24. 13 ⟨n,m⟩ ∈ F \\from P3 with 12 and 2
  25. 14 ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
  26. 15 n = 2m -> ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
  27.  
  28. 16 If n = 2m+1:
  29. 17 ∃z ∈ N (n = 2z+1 ^ -m = -z)
  30. 18 φ(n, -m) = ∃z∈N [(n=2z ^ -m=z) v (n=2z+1 ^ -m=-z)] = T
  31. 19 n ∈ N ^ -m ∈ Z ^ ⟨n,m⟩ ∈ N x Z ^ φ(n,m)=T
  32. 20 ⟨n,-m⟩ ∈ F
  33. 20 ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
  34. 22 n = 2m+1 -> ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
  35. 23 n = 2m -> ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩ \\restating 14
  36. 24 n = 2m ∨ n = 2m+1 \\restating 7
  37. 25 ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
  38. 26 ∀n ∈ N: ∃x ∈ F ∃z ∈ Z: x = ⟨n, z⟩
  39.  
  40. \\Prove ⟨x',y_1⟩, ⟨x', y_2⟩ ∈ F implies y_1 = y_2
  41. 27 If ⟨x',y_1⟩, ⟨x', y_2⟩ ∈ F:
  42. 28 φ(x', y_1) ^ φ(x', y_2) \\from 27, P2
  43. 29 z_1 := z_1 ∈ N ^ (x'=2z_1 ∧ y_1=z_1) ∨ (x'=2z_1 +1 ∧ y_1=-z_1) \\from 28, P2
  44. 30 z_2 := z_2 ∈ N ^ (x'=2z_2 ∧ y_2=z_2) ∨ (x'=2z_2 +1 ∧ y_2=-z_2) \\from 28, P2
  45.  
  46. 31 If x' = 2z_1:
  47. 32 y_1 = z_1 \\from 29
  48. 33 x'=2z_2 ^ y_2=z_2 ∨ x' = 2z_2+1 ^ y_2=-z_2 \\from 30
  49.  
  50. 34 If x'=2z_2:
  51. 35 x' = 2z_1 = 2z_2
  52. 36 z_1 = z_2
  53. 37 y_2 = z_1
  54. 38 y_1 = y_2
  55. 39 x'=2z_2 -> y_1 = y_2
  56.  
  57. 40 If x'=2z_2+1:
  58. 41 2z_1 = 2z_2+1
  59. 42 ⊥ (PA1*)
  60. 43 ¬(x' = 2z_2 + 1)
  61. 44 x'=2z_2 \\disjunctive syllogism with 33
  62. 45 y_1 = y_2 \\from 39
  63. 46 x' = 2z_1 -> y_1 = y_2
  64.  
  65. 47 If x' = 2z_1 + 1:
  66. 48 y_1 = -z_1 \\from 29
  67. 49 x'=2z_2 ^ y_2=z_2 ∨ x' = 2z_2+1 ^ y_2=-z_2 \\from 30
  68.  
  69. 50 If x' = 2z_2 + 1:
  70. 51 2z_1 + 1 = 2z_2 + 1
  71. 52 z_1 = z_2
  72. 53 y_2 = -z_1
  73. 54 x' = 2z_2 + 1 -> y_1 = y_2
  74.  
  75. 55 If x'=2z_2:
  76. 56 2z_2 = 2z_1 + 1
  77. 57 ⊥ (PA1*)
  78. 58 x' = 2z_2 + 1 \\disjunctive syllogism
  79. 59 y_1 = y_2
  80. 60 x' = 2z_1 + 1 -> y_1 = y_2
  81. 61
  82. 62 x' = 2z_1 -> y_1 = y_2 \\restating 46
  83. 63 x' = 2z_1 + 1 -> y_1 = y_2 \restating 60
  84. 64 x' = 2z_1 ∨ x' = 2z_1 + 1 \\from 29
  85. 65 y_1 = y_2
  86. 66 ⟨x',y_1⟩, ⟨x', y_2⟩ ∈ F -> y_1 = y_2
  87.  
  88. 67 ∀n ∈ N: ∃x ∈ F ∃z ∈ Z: x = ⟨n, z⟩ \\restating 26
  89. 68 F ∈ P(N x Z) \\restating 5
  90.  
  91. 69 ∴F satisfies **function-type** \\from 66,67,68
Advertisement
Add Comment
Please, Sign In to add comment