Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \\Header
- PA1 ∀k∈N ∃m∈N ( k = m·2 ∨ k = m·2+1 )
- PA1* ∀k,m ∈ N (k = 2m -> ¬∃n ∈ N (k = 2n+1)) \\modified PA1
- P1 Z ∈ set
- P2 φ is a property with two parameters and ∀x∀y: φ(x,y) <-> ∃z∈N [(x=2z ^ y=z) v (x=2z+1 ^ y=-z)]
- P3 y ∈ {x : ψ(x)} <-> ψ(y)
- P4 N ⊆ Z
- \\Prove F := {⟨x,y⟩:x∈N ^ y ∈ Z ^ φ(x,y)} is a set in P(N x Z)
- 1 N x Z ∈ set \\from P1, **naturals**, **product-type**
- 2 F = {p: p ∈ N x Z ^ ∃n ∈ N ∃z ∈ Z (p = ⟨n,z⟩ ^ φ(n,z))} ∈ set \\from **comprehension**
- 3 p ∈ F <-> p ∈ N x Z \\from 3, P3
- 4 F ⊆ N x Z
- 5 F ∈ P(N x Z)
- \\Prove ∀n ∈ N: ∃x ∈ F ∃z ∈ Z: x = ⟨n, z⟩
- 6 Given n ∈ N:
- 7 m := n = 2m ∨ n = 2m+1 \\from PA1
- 8 m ∈ Z \\from P4
- 9 If n = 2m:
- 10 ∃z ∈ N (n = 2z ^ m = z)
- 11 φ(n, m) = ∃z∈N [(n=2z ^ m=z) v (n=2z+1 ^ m=-z)] = T
- 12 n ∈ N ^ m ∈ Z ^ ⟨n,m⟩ ∈ N x Z ^ φ(n,m)=T
- 13 ⟨n,m⟩ ∈ F \\from P3 with 12 and 2
- 14 ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
- 15 n = 2m -> ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
- 16 If n = 2m+1:
- 17 ∃z ∈ N (n = 2z+1 ^ -m = -z)
- 18 φ(n, -m) = ∃z∈N [(n=2z ^ -m=z) v (n=2z+1 ^ -m=-z)] = T
- 19 n ∈ N ^ -m ∈ Z ^ ⟨n,m⟩ ∈ N x Z ^ φ(n,m)=T
- 20 ⟨n,-m⟩ ∈ F
- 20 ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
- 22 n = 2m+1 -> ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
- 23 n = 2m -> ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩ \\restating 14
- 24 n = 2m ∨ n = 2m+1 \\restating 7
- 25 ∃x ∈ F: ∃z ∈ Z: x = ⟨n, z⟩
- 26 ∀n ∈ N: ∃x ∈ F ∃z ∈ Z: x = ⟨n, z⟩
- \\Prove ⟨x',y_1⟩, ⟨x', y_2⟩ ∈ F implies y_1 = y_2
- 27 If ⟨x',y_1⟩, ⟨x', y_2⟩ ∈ F:
- 28 φ(x', y_1) ^ φ(x', y_2) \\from 27, P2
- 29 z_1 := z_1 ∈ N ^ (x'=2z_1 ∧ y_1=z_1) ∨ (x'=2z_1 +1 ∧ y_1=-z_1) \\from 28, P2
- 30 z_2 := z_2 ∈ N ^ (x'=2z_2 ∧ y_2=z_2) ∨ (x'=2z_2 +1 ∧ y_2=-z_2) \\from 28, P2
- 31 If x' = 2z_1:
- 32 y_1 = z_1 \\from 29
- 33 x'=2z_2 ^ y_2=z_2 ∨ x' = 2z_2+1 ^ y_2=-z_2 \\from 30
- 34 If x'=2z_2:
- 35 x' = 2z_1 = 2z_2
- 36 z_1 = z_2
- 37 y_2 = z_1
- 38 y_1 = y_2
- 39 x'=2z_2 -> y_1 = y_2
- 40 If x'=2z_2+1:
- 41 2z_1 = 2z_2+1
- 42 ⊥ (PA1*)
- 43 ¬(x' = 2z_2 + 1)
- 44 x'=2z_2 \\disjunctive syllogism with 33
- 45 y_1 = y_2 \\from 39
- 46 x' = 2z_1 -> y_1 = y_2
- 47 If x' = 2z_1 + 1:
- 48 y_1 = -z_1 \\from 29
- 49 x'=2z_2 ^ y_2=z_2 ∨ x' = 2z_2+1 ^ y_2=-z_2 \\from 30
- 50 If x' = 2z_2 + 1:
- 51 2z_1 + 1 = 2z_2 + 1
- 52 z_1 = z_2
- 53 y_2 = -z_1
- 54 x' = 2z_2 + 1 -> y_1 = y_2
- 55 If x'=2z_2:
- 56 2z_2 = 2z_1 + 1
- 57 ⊥ (PA1*)
- 58 x' = 2z_2 + 1 \\disjunctive syllogism
- 59 y_1 = y_2
- 60 x' = 2z_1 + 1 -> y_1 = y_2
- 61
- 62 x' = 2z_1 -> y_1 = y_2 \\restating 46
- 63 x' = 2z_1 + 1 -> y_1 = y_2 \restating 60
- 64 x' = 2z_1 ∨ x' = 2z_1 + 1 \\from 29
- 65 y_1 = y_2
- 66 ⟨x',y_1⟩, ⟨x', y_2⟩ ∈ F -> y_1 = y_2
- 67 ∀n ∈ N: ∃x ∈ F ∃z ∈ Z: x = ⟨n, z⟩ \\restating 26
- 68 F ∈ P(N x Z) \\restating 5
- 69 ∴F satisfies **function-type** \\from 66,67,68
Advertisement
Add Comment
Please, Sign In to add comment