Advertisement
Guest User

Untitled

a guest
Jun 9th, 2011
378
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 0.67 KB | None | 0 0
  1. import numpy as np
  2. import scipy.stats
  3.  
  4. # Generate correlated series of binary data
  5.  
  6. nobs = 150 # Lenght of the series
  7. x = np.zeros((nobs))
  8. # Create autocorrelated data
  9. for i in range(1,nobs):
  10.     x[i] = .25 * x[i-1] + np.random.randn()
  11.  
  12. # Do a logit transform, converts x to 0-1 interval
  13. p = 1./(1+np.exp(-x))
  14.  
  15. # Define a Bernoulli distribution using p
  16.  
  17.  
  18. # Call the random number generator
  19. tseries1 = np.array( [scipy.stats.bernoulli.rvs( p[i]) for i in xrange(nobs)] )
  20. tseries2 = np.array( [scipy.stats.bernoulli.rvs( p[i]) for i in xrange(nobs)] )
  21. tseries3 = np.array( [scipy.stats.bernoulli.rvs( p[i]) for i in xrange(nobs)] )
  22. tseries3 = r.rvs()
  23. tseries4 = r.rvs()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement