Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import scipy.stats
- # Generate correlated series of binary data
- nobs = 150 # Lenght of the series
- x = np.zeros((nobs))
- # Create autocorrelated data
- for i in range(1,nobs):
- x[i] = .25 * x[i-1] + np.random.randn()
- # Do a logit transform, converts x to 0-1 interval
- p = 1./(1+np.exp(-x))
- # Define a Bernoulli distribution using p
- # Call the random number generator
- tseries1 = np.array( [scipy.stats.bernoulli.rvs( p[i]) for i in xrange(nobs)] )
- tseries2 = np.array( [scipy.stats.bernoulli.rvs( p[i]) for i in xrange(nobs)] )
- tseries3 = np.array( [scipy.stats.bernoulli.rvs( p[i]) for i in xrange(nobs)] )
- tseries3 = r.rvs()
- tseries4 = r.rvs()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement