Pastebin launched a little side project called VERYVIRAL.com, check it out ;-) Want more features on Pastebin? Sign Up, it's FREE!
Guest

Untitled

By: a guest on Oct 15th, 2012  |  syntax: None  |  size: 38.85 KB  |  views: 29  |  expires: Never
download  |  raw  |  embed  |  report abuse  |  print
Text below is selected. Please press Ctrl+C to copy to your clipboard. (⌘+C on Mac)
  1. In[432]:= nPoints = 7;
  2. data = Table[{Subscript[x, i], Subscript[y, i]}, {i, nPoints}];
  3. errors = Table[{Subscript[dx, i], Subscript[dy, i]}, {i, nPoints}];
  4.  
  5. model[a_, b_, x_] = a x + b;
  6.  
  7. (*The least-squares functional;can be different,i.e.actual distance \
  8. to the line*)
  9. objFun[a_, b_, data_] :=
  10.  Total[(#[[2]] - model[a, b, #[[1]]])^2 & /@ data]
  11.  
  12. (*The usual solution*)
  13. solab = First@
  14.    Solve[{D[objFun[a, b, data], a] == 0,
  15.      D[objFun[a, b, data], b] == 0}, {a, b}];
  16.  
  17. (*The squared deltas relative to the input data*)
  18. deltaa = Flatten@{D[a /. solab, #]^2 & /@ data[[All, 1]],
  19.     D[a /. solab, #]^2 & /@ data[[All, 2]]};
  20. deltab = Flatten@{D[b /. solab, #]^2 & /@ data[[All, 1]],
  21.     D[b /. solab, #]^2 & /@ data[[All, 2]]};
  22.  
  23. (*The error is the sum of delta times uncertainty,assuming \
  24. independence*)
  25. errora = Sqrt[Dot[deltaa, Flatten[errors]^2]];
  26. errorb = Sqrt[Dot[deltab, Flatten[errors]^2]];
  27.  
  28. ndata = {{2.04, 1.9975}, {3.06, 3.2160}, {4.08, 4.0939}, {5.10,
  29.    4.9878}, {6.12, 6.4685}, {7.14, 7.2003}, {8.16, 8.2944}}
  30. nerrors = {{0.02, 0.1696}, {0.03, 0.1793}, {0.04, 0.1821}, {0.05,
  31.    0.2568}, {0.06, 0.4197}, {0.07, 0.1342}, {0.08, 0.2304}}
  32.  
  33. nmodel[x_] =
  34.  model[a, b,
  35.    x] /. (solab /. Thread[Rule[Flatten[data], Flatten[ndata]]])
  36. nsolab = solab /. Thread[Rule[Flatten[data], Flatten[ndata]]]
  37. nerrorab = {errora, errorb} //.
  38.   Join[Thread[Rule[Flatten[data], Flatten[ndata]]],
  39.    Thread[Rule[Flatten[errors], Flatten[nerrors]]]]
  40.  
  41. Needs["ErrorBarPlots`"]
  42.  
  43. Show[Plot[{model[(a /. nsolab) - nerrorab[[1]], (b /. nsolab) -
  44.      nerrorab[[2]], x],
  45.    model[(a /. nsolab) - nerrorab[[1]], (b /. nsolab) + nerrorab[[2]],
  46.      x], model[(a /. nsolab) + nerrorab[[1]], (b /. nsolab) -
  47.      nerrorab[[2]], x],
  48.    model[(a /. nsolab) + nerrorab[[1]], (b /. nsolab) + nerrorab[[2]],
  49.      x], nmodel[x]}, {x, -2, 2},
  50.   PlotStyle -> {Dashed, Dashed, Dotted, Dotted, Red},
  51.   PlotRange -> All],
  52.  ErrorListPlot[Transpose[{ndata, ErrorBar @@@ nerrors}]]]
  53.  
  54. During evaluation of In[432]:= LinearModelFit::notdata: The first argument is not a vector, matrix, or a list containing a design matrix and response vector. >>
  55.  
  56. During evaluation of In[432]:= Set::write: Tag LinearModelFit in LinearModelFit[{{{2.04,0.02},{1.9975,0.1696}},{{3.06,0.03},{3.216,0.1793}},{{4.08,0.04},{4.0939,0.1821}}},x,x][a_,b_,x_] is Protected. >>
  57.  
  58. During evaluation of In[432]:= Solve::inex: Solve was unable to solve the system with inexact coefficients or the system obtained by direct rationalization of inexact numbers present in the system. Since many of the methods used by Solve require exact input, providing Solve with an exact version of the system may help. >>
  59.  
  60. During evaluation of In[432]:= ReplaceAll::reps: {-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 1]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 1]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 2]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 2]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 3]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 3]]-2 (Subscript[{{<<2>>},<<3>>,{<<2>>}}, 4]-<<1>>[a,b,Subscript[<<2>>]]) (LinearModelFit[<<1>>]^(1,0,0))[a,b,Subscript[x, 4]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 5]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 5]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 6]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 6]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 7]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 7]]==0,<<1>>==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  61.  
  62. During evaluation of In[432]:= ReplaceAll::reps: {-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 1]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 1]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 2]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 2]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 3]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 3]]-2 (Subscript[{{<<2>>},<<3>>,{<<2>>}}, 4]-<<1>>[a,b,Subscript[<<2>>]]) (LinearModelFit[<<1>>]^(1,0,0))[a,b,Subscript[x, 4]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 5]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 5]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 6]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 6]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 7]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 7]]==0,<<1>>==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  63.  
  64. During evaluation of In[432]:= ReplaceAll::reps: {-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 1]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 1]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 2]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 2]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 3]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 3]]-2 (Subscript[{{<<2>>},<<3>>,{<<2>>}}, 4]-<<1>>[a,b,Subscript[<<2>>]]) (LinearModelFit[<<1>>]^(1,0,0))[a,b,Subscript[x, 4]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 5]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 5]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 6]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 6]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 7]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 7]]==0,<<1>>==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  65.  
  66. During evaluation of In[432]:= General::stop: Further output of ReplaceAll::reps will be suppressed during this calculation. >>
  67.  
  68. During evaluation of In[432]:= ReplaceAll::reps: {-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 1]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 1]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 2]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 2]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 3]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 3]]-2 (Subscript[{{<<2>>},<<3>>,{<<2>>}}, 4]-<<1>>[a,b,Subscript[<<2>>]]) (LinearModelFit[<<1>>]^(1,0,0))[a,b,Subscript[x, 4]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 5]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 5]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 6]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 6]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 7]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 7]]==0,<<1>>==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  69.  
  70. During evaluation of In[432]:= ReplaceAll::reps: {-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 1]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 1]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 2]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 2]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 3]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 3]]-2 (Subscript[{{<<2>>},<<3>>,{<<2>>}}, 4]-<<1>>[a,b,Subscript[<<2>>]]) (LinearModelFit[<<1>>]^(1,0,0))[a,b,Subscript[x, 4]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 5]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 5]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 6]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 6]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 7]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 7]]==0,<<1>>==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  71.  
  72. During evaluation of In[432]:= ReplaceAll::reps: {-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 1]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 1]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 2]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 2]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 3]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 3]]-2 (Subscript[{{<<2>>},<<3>>,{<<2>>}}, 4]-<<1>>[a,b,Subscript[<<2>>]]) (LinearModelFit[<<1>>]^(1,0,0))[a,b,Subscript[x, 4]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 5]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 5]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 6]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 6]]-2 (Subscript[{{<<2>>},{<<2>>},{<<2>>},{<<2>>},{<<2>>}}, 7]-LinearModelFit[{<<3>>},x,x][a,b,Subscript[<<2>>]]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,Subscript[x, 7]]==0,<<1>>==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  73.  
  74. During evaluation of In[432]:= General::stop: Further output of ReplaceAll::reps will be suppressed during this calculation. >>
  75.  
  76. Out[442]= {{2.04, 1.9975}, {3.06, 3.216}, {4.08, 4.0939}, {5.1,
  77.   4.9878}, {6.12, 6.4685}, {7.14, 7.2003}, {8.16, 8.2944}}
  78.  
  79. Out[443]= {{0.02, 0.1696}, {0.03, 0.1793}, {0.04, 0.1821}, {0.05,
  80.   0.2568}, {0.06, 0.4197}, {0.07, 0.1342}, {0.08, 0.2304}}
  81.  
  82. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},x,x][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},x,x][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,3.06]-2 (4.0939 -LinearModelFit[{<<3>>},x,x][a,b,4.08]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,4.08]-2 (4.9878 -LinearModelFit[{<<3>>},x,x][a,b,5.1]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,5.1]-2 (6.4685 -LinearModelFit[{<<3>>},x,x][a,b,6.12]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},x,x][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},x,x][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,8.16]==0,<<1>>==0}
  83.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  84.  
  85. Out[444]=
  86. LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  87.       0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}}, x,
  88.    x][a, b,
  89.   x] /. {-2 (1.9975 -
  90.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  91.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  92.             0.1821}}}, x, x][a, b, 2.04])
  93. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  94.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  95.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  96. TagBox[
  97. RowBox[{"(",
  98. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  99. Derivative],
  100. MultilineFunction->None]\)[a, b, 2.04] -
  101.     2 (3.216 -
  102.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  103.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  104.             0.1821}}}, x, x][a, b, 3.06])
  105. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  106.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  107.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  108. TagBox[
  109. RowBox[{"(",
  110. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  111. Derivative],
  112. MultilineFunction->None]\)[a, b, 3.06] -
  113.     2 (4.0939 -
  114.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  115.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  116.             0.1821}}}, x, x][a, b, 4.08])
  117. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  118.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  119.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  120. TagBox[
  121. RowBox[{"(",
  122. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  123. Derivative],
  124. MultilineFunction->None]\)[a, b, 4.08] -
  125.     2 (4.9878 -
  126.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  127.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  128.             0.1821}}}, x, x][a, b, 5.1])
  129. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  130.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  131.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  132. TagBox[
  133. RowBox[{"(",
  134. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  135. Derivative],
  136. MultilineFunction->None]\)[a, b, 5.1] -
  137.     2 (6.4685 -
  138.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  139.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  140.             0.1821}}}, x, x][a, b, 6.12])
  141. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  142.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  143.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  144. TagBox[
  145. RowBox[{"(",
  146. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  147. Derivative],
  148. MultilineFunction->None]\)[a, b, 6.12] -
  149.     2 (7.2003 -
  150.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  151.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  152.             0.1821}}}, x, x][a, b, 7.14])
  153. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  154.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  155.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  156. TagBox[
  157. RowBox[{"(",
  158. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  159. Derivative],
  160. MultilineFunction->None]\)[a, b, 7.14] -
  161.     2 (8.2944 -
  162.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  163.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  164.             0.1821}}}, x, x][a, b, 8.16])
  165. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  166.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  167.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  168. TagBox[
  169. RowBox[{"(",
  170. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  171. Derivative],
  172. MultilineFunction->None]\)[a, b, 8.16] ==
  173.    0, -2 (1.9975 -
  174.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  175.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  176.             0.1821}}}, x, x][a, b, 2.04])
  177. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  178.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  179.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  180. TagBox[
  181. RowBox[{"(",
  182. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  183. Derivative],
  184. MultilineFunction->None]\)[a, b, 2.04] -
  185.     2 (3.216 -
  186.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  187.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  188.             0.1821}}}, x, x][a, b, 3.06])
  189. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  190.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  191.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  192. TagBox[
  193. RowBox[{"(",
  194. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  195. Derivative],
  196. MultilineFunction->None]\)[a, b, 3.06] -
  197.     2 (4.0939 -
  198.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  199.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  200.             0.1821}}}, x, x][a, b, 4.08])
  201. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  202.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  203.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  204. TagBox[
  205. RowBox[{"(",
  206. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  207. Derivative],
  208. MultilineFunction->None]\)[a, b, 4.08] -
  209.     2 (4.9878 -
  210.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  211.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  212.             0.1821}}}, x, x][a, b, 5.1])
  213. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  214.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  215.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  216. TagBox[
  217. RowBox[{"(",
  218. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  219. Derivative],
  220. MultilineFunction->None]\)[a, b, 5.1] -
  221.     2 (6.4685 -
  222.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  223.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  224.             0.1821}}}, x, x][a, b, 6.12])
  225. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  226.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  227.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  228. TagBox[
  229. RowBox[{"(",
  230. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  231. Derivative],
  232. MultilineFunction->None]\)[a, b, 6.12] -
  233.     2 (7.2003 -
  234.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  235.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  236.             0.1821}}}, x, x][a, b, 7.14])
  237. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  238.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  239.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  240. TagBox[
  241. RowBox[{"(",
  242. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  243. Derivative],
  244. MultilineFunction->None]\)[a, b, 7.14] -
  245.     2 (8.2944 -
  246.        LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  247.             0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939,
  248.             0.1821}}}, x, x][a, b, 8.16])
  249. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  250.            0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  251.            0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  252. TagBox[
  253. RowBox[{"(",
  254. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  255. Derivative],
  256. MultilineFunction->None]\)[a, b, 8.16] == 0}
  257.  
  258. Out[445]= {-2 (1.9975 -
  259.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  260.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  261.          x, x][a, b, 2.04])
  262. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  263.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  264.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  265. TagBox[
  266. RowBox[{"(",
  267. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  268. Derivative],
  269. MultilineFunction->None]\)[a, b, 2.04] -
  270.    2 (3.216 -
  271.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  272.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  273.          x, x][a, b, 3.06])
  274. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  275.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  276.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  277. TagBox[
  278. RowBox[{"(",
  279. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  280. Derivative],
  281. MultilineFunction->None]\)[a, b, 3.06] -
  282.    2 (4.0939 -
  283.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  284.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  285.          x, x][a, b, 4.08])
  286. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  287.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  288.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  289. TagBox[
  290. RowBox[{"(",
  291. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  292. Derivative],
  293. MultilineFunction->None]\)[a, b, 4.08] -
  294.    2 (4.9878 -
  295.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  296.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  297.          x, x][a, b, 5.1])
  298. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  299.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  300.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  301. TagBox[
  302. RowBox[{"(",
  303. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  304. Derivative],
  305. MultilineFunction->None]\)[a, b, 5.1] -
  306.    2 (6.4685 -
  307.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  308.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  309.          x, x][a, b, 6.12])
  310. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  311.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  312.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  313. TagBox[
  314. RowBox[{"(",
  315. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  316. Derivative],
  317. MultilineFunction->None]\)[a, b, 6.12] -
  318.    2 (7.2003 -
  319.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  320.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  321.          x, x][a, b, 7.14])
  322. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  323.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  324.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  325. TagBox[
  326. RowBox[{"(",
  327. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  328. Derivative],
  329. MultilineFunction->None]\)[a, b, 7.14] -
  330.    2 (8.2944 -
  331.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  332.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  333.          x, x][a, b, 8.16])
  334. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  335.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  336.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  337. TagBox[
  338. RowBox[{"(",
  339. RowBox[{"1", ",", "0", ",", "0"}], ")"}],
  340. Derivative],
  341. MultilineFunction->None]\)[a, b, 8.16] ==
  342.   0, -2 (1.9975 -
  343.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  344.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  345.          x, x][a, b, 2.04])
  346. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  347.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  348.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  349. TagBox[
  350. RowBox[{"(",
  351. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  352. Derivative],
  353. MultilineFunction->None]\)[a, b, 2.04] -
  354.    2 (3.216 -
  355.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  356.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  357.          x, x][a, b, 3.06])
  358. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  359.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  360.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  361. TagBox[
  362. RowBox[{"(",
  363. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  364. Derivative],
  365. MultilineFunction->None]\)[a, b, 3.06] -
  366.    2 (4.0939 -
  367.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  368.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  369.          x, x][a, b, 4.08])
  370. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  371.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  372.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  373. TagBox[
  374. RowBox[{"(",
  375. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  376. Derivative],
  377. MultilineFunction->None]\)[a, b, 4.08] -
  378.    2 (4.9878 -
  379.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  380.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  381.          x, x][a, b, 5.1])
  382. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  383.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  384.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  385. TagBox[
  386. RowBox[{"(",
  387. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  388. Derivative],
  389. MultilineFunction->None]\)[a, b, 5.1] -
  390.    2 (6.4685 -
  391.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  392.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  393.          x, x][a, b, 6.12])
  394. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  395.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  396.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  397. TagBox[
  398. RowBox[{"(",
  399. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  400. Derivative],
  401. MultilineFunction->None]\)[a, b, 6.12] -
  402.    2 (7.2003 -
  403.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  404.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  405.          x, x][a, b, 7.14])
  406. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  407.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  408.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  409. TagBox[
  410. RowBox[{"(",
  411. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  412. Derivative],
  413. MultilineFunction->None]\)[a, b, 7.14] -
  414.    2 (8.2944 -
  415.       LinearModelFit[{{{2.04, 0.02}, {1.9975, 0.1696}}, {{3.06,
  416.            0.03}, {3.216, 0.1793}}, {{4.08, 0.04}, {4.0939, 0.1821}}},
  417.          x, x][a, b, 8.16])
  418. \!\(\*SuperscriptBox[\(LinearModelFit[{{{2.04`, 0.02`}, {1.9975`,
  419.           0.1696`}}, {{3.06`, 0.03`}, {3.216`, 0.1793`}}, {{4.08`,
  420.           0.04`}, {4.0939`, 0.1821`}}}, x, x]\), \*
  421. TagBox[
  422. RowBox[{"(",
  423. RowBox[{"0", ",", "1", ",", "0"}], ")"}],
  424. Derivative],
  425. MultilineFunction->None]\)[a, b, 8.16] == 0}
  426.  
  427. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},x,x][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},x,x][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,3.06]-2 (4.0939 -LinearModelFit[{<<3>>},x,x][a,b,4.08]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,4.08]-2 (4.9878 -LinearModelFit[{<<3>>},x,x][a,b,5.1]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,5.1]-2 (6.4685 -LinearModelFit[{<<3>>},x,x][a,b,6.12]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},x,x][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},x,x][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,8.16]==0,<<1>>==0}
  428.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  429.  
  430. During evaluation of In[432]:= General::ivar: 2.04` is not a valid variable. >>
  431.  
  432. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},x,x][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},x,x][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,3.06]-2 (4.0939 -LinearModelFit[{<<3>>},x,x][a,b,4.08]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,4.08]-2 (4.9878 -LinearModelFit[{<<3>>},x,x][a,b,5.1]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,5.1]-2 (6.4685 -LinearModelFit[{<<3>>},x,x][a,b,6.12]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},x,x][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},x,x][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,8.16]==0,<<1>>==0}
  433.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  434.  
  435. During evaluation of In[432]:= General::ivar: 4.08` is not a valid variable. >>
  436.  
  437. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},x,x][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},x,x][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,3.06]-2 (4.0939 -LinearModelFit[{<<3>>},x,x][a,b,4.08]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,4.08]-2 (4.9878 -LinearModelFit[{<<3>>},x,x][a,b,5.1]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,5.1]-2 (6.4685 -LinearModelFit[{<<3>>},x,x][a,b,6.12]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},x,x][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},x,x][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},x,x]^(1,0,0))[a,b,8.16]==0,<<1>>==0}
  438.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  439.  
  440. During evaluation of In[432]:= General::stop: Further output of ReplaceAll::reps will be suppressed during this calculation. >>
  441.  
  442. During evaluation of In[432]:= General::ivar: 6.12` is not a valid variable. >>
  443.  
  444. During evaluation of In[432]:= General::stop: Further output of General::ivar will be suppressed during this calculation. >>
  445.  
  446. Out[446]= Out[446]
  447.  
  448. During evaluation of In[432]:= LinearModelFit::notdata: The first argument is not a vector, matrix, or a list containing a design matrix and response vector. >>
  449.  
  450. During evaluation of In[432]:= LinearModelFit::notdata: The first argument is not a vector, matrix, or a list containing a design matrix and response vector. >>
  451.  
  452. During evaluation of In[432]:= LinearModelFit::notdata: The first argument is not a vector, matrix, or a list containing a design matrix and response vector. >>
  453.  
  454. During evaluation of In[432]:= General::stop: Further output of LinearModelFit::notdata will be suppressed during this calculation. >>
  455.  
  456. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,3.06]-2 (4.0939 -<<1>>) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,4.08]-2 (<<1>>) <<1>>-2 (6.4685 -<<1>>) (LinearModelFit[<<1>>]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,8.16]==0,<<1>>}
  457.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  458.  
  459. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,3.06]-2 (4.0939 -<<1>>) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,4.08]-2 (<<1>>) <<1>>-2 (6.4685 -<<1>>) (LinearModelFit[<<1>>]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,8.16]==0,<<1>>}
  460.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  461.  
  462. During evaluation of In[432]:= General::ivar: 1.9975` is not a valid variable. >>
  463.  
  464. During evaluation of In[432]:= ReplaceAll::reps: {-2 (1.9975 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,2.04]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,2.04]-2 (3.216 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,3.06]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,3.06]-2 (4.0939 -<<1>>) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,4.08]-2 (<<1>>) <<1>>-2 (6.4685 -<<1>>) (LinearModelFit[<<1>>]^(1,0,0))[a,b,6.12]-2 (7.2003 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,7.14]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,7.14]-2 (8.2944 -LinearModelFit[{<<3>>},-1.99992,-1.99992][a,b,8.16]) (LinearModelFit[{{<<2>>},{<<2>>},{<<2>>}},-1.99992,-1.99992]^(1,0,0))[a,b,8.16]==0,<<1>>}
  465.  is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
  466.  
  467. During evaluation of In[432]:= General::stop: Further output of ReplaceAll::reps will be suppressed during this calculation. >>
  468.  
  469. During evaluation of In[432]:= General::ivar: 2.04` is not a valid variable. >>
  470.  
  471. During evaluation of In[432]:= General::ivar: 3.06` is not a valid variable. >>
  472.  
  473. During evaluation of In[432]:= General::stop: Further output of General::ivar will be suppressed during this calculation. >>
  474.  
  475. Out[448]= \!\(\*
  476. GraphicsBox[{GraphicsComplexBox[CompressedData["
  477. 1:eJxTTMoPSmViYGD4BcQgWs9e7NX////3M0BB+fmW3PR9/+D8K1e4Xx1M/Avn
  478. yx7IFzGX+QPnb80+wsp/9xecn9Bj+OFm0084/8ek6o799j/g/MV89yRnPPwG
  479. 58/xMiy63PkVzm/KSazQ9PwC51czryovevsJzk9sOK9ybcVHOH/q3qcz5mR9
  480. gPN33dfgWaP0Ds5XFnBwCpn3Gs7fpNWR9ejxCzj//tGNCmZmz+D8pzpTjfZv
  481. ewznC9atNNNjfAjn65i911n6+Q6c3+zy9sLOiutwvmjIugmR4pcQ9n07yn9C
  482. 5RScv/T2096XLfvg/NhAmS23k5fA+Tu5qq8eKl1sD+ObPmKUa4zYD+crf9j9
  483. 0+rQSTjfc/HNs34Rl+B8V18h5q9br8P5/fHXGwy234Hzj/vJ8gYIPYTz3yqK
  484. 1l2a9RjOLy3RTuwXewbnX78jEJR24gWcn1Bp85zd5zWcf1jbvOsw6zs4X41z
  485. z4slHh/gfNk92a6sHR/hfIZfTCuLHn2C878H7o07qvoFzr9tEi+t2vIVzi8I
  486. FxBUuvMNzpec8iSCRfYHnL8uesHyzxU/4fxw23qPE3t/wfkb43KVrP78hvN/
  487. cDkz7wz9C+cHXbQ2k53xD86H5gd0/mj+gILR/DGaP0bzx2j+gPFH88do/hjN
  488. H6P5A8YfzR+j+WM0f1AvfwAAfpgrew==
  489. "], {}], {{},
  490. {Hue[0.67, 0.6, 0.6],
  491.       PointBox[{{2.04, 1.9975}, {3.06, 3.216}, {4.08, 4.0939}, {5.1,
  492.        4.9878}, {6.12, 6.4685}, {7.14, 7.2003}, {8.16,
  493.        8.2944}}], {{LineBox[{{2.06, 1.9975}, {2.02, 1.9975}}],
  494.         LineBox[{
  495.          Offset[{0, 1.5}, {2.06, 1.9975}],
  496.           Offset[{0, -1.5}, {2.06, 1.9975}]}],
  497.         LineBox[{
  498.          Offset[{0, 1.5}, {2.02, 1.9975}],
  499.           Offset[{0, -1.5}, {2.02, 1.9975}]}],
  500.         LineBox[{{2.04, 2.1671}, {2.04, 1.8279}}],
  501.         LineBox[{
  502.          Offset[{1.5, 0}, {2.04, 2.1671}],
  503.           Offset[{-1.5, 0}, {2.04, 2.1671}]}],
  504.         LineBox[{
  505.          Offset[{1.5, 0}, {2.04, 1.8279}],
  506.           Offset[{-1.5, 0}, {2.04, 1.8279}]}]}, {
  507.         LineBox[{{3.09, 3.216}, {3.0300000000000002`, 3.216}}],
  508.         LineBox[{
  509.          Offset[{0, 1.5}, {3.09, 3.216}],
  510.           Offset[{0, -1.5}, {3.09, 3.216}]}],
  511.         LineBox[{
  512.          Offset[{0, 1.5}, {3.0300000000000002`, 3.216}],
  513.           Offset[{0, -1.5}, {3.0300000000000002`, 3.216}]}],
  514.         LineBox[{{3.06, 3.3953}, {3.06, 3.0367}}],
  515.         LineBox[{
  516.          Offset[{1.5, 0}, {3.06, 3.3953}],
  517.           Offset[{-1.5, 0}, {3.06, 3.3953}]}],
  518.         LineBox[{
  519.          Offset[{1.5, 0}, {3.06, 3.0367}],
  520.           Offset[{-1.5, 0}, {3.06, 3.0367}]}]}, {
  521.         LineBox[{{4.12, 4.0939}, {4.04, 4.0939}}],
  522.         LineBox[{
  523.          Offset[{0, 1.5}, {4.12, 4.0939}],
  524.           Offset[{0, -1.5}, {4.12, 4.0939}]}],
  525.         LineBox[{
  526.          Offset[{0, 1.5}, {4.04, 4.0939}],
  527.           Offset[{0, -1.5}, {4.04, 4.0939}]}],
  528.         LineBox[{{4.08, 4.276}, {4.08, 3.9117999999999995`}}],
  529.         LineBox[{
  530.          Offset[{1.5, 0}, {4.08, 4.276}],
  531.           Offset[{-1.5, 0}, {4.08, 4.276}]}],
  532.         LineBox[{
  533.          Offset[{1.5, 0}, {4.08, 3.9117999999999995`}],
  534.           Offset[{-1.5, 0}, {4.08, 3.9117999999999995`}]}]}, {
  535.         LineBox[{{5.1499999999999995`, 4.9878}, {5.05, 4.9878}}],
  536.         LineBox[{
  537.          Offset[{0, 1.5}, {5.1499999999999995`, 4.9878}],
  538.           Offset[{0, -1.5}, {5.1499999999999995`, 4.9878}]}],
  539.         LineBox[{
  540.          Offset[{0, 1.5}, {5.05, 4.9878}],
  541.           Offset[{0, -1.5}, {5.05, 4.9878}]}],
  542.         LineBox[{{5.1, 5.2446}, {5.1, 4.731}}],
  543.         LineBox[{
  544.          Offset[{1.5, 0}, {5.1, 5.2446}],
  545.           Offset[{-1.5, 0}, {5.1, 5.2446}]}],
  546.         LineBox[{
  547.          Offset[{1.5, 0}, {5.1, 4.731}],
  548.           Offset[{-1.5, 0}, {5.1, 4.731}]}]}, {
  549.         LineBox[{{6.18, 6.4685}, {6.0600000000000005`, 6.4685}}],
  550.         LineBox[{
  551.          Offset[{0, 1.5}, {6.18, 6.4685}],
  552.           Offset[{0, -1.5}, {6.18, 6.4685}]}],
  553.         LineBox[{
  554.          Offset[{0, 1.5}, {6.0600000000000005`, 6.4685}],
  555.           Offset[{0, -1.5}, {6.0600000000000005`, 6.4685}]}],
  556.         LineBox[{{6.12, 6.888199999999999}, {6.12, 6.0488}}],
  557.         LineBox[{
  558.          Offset[{1.5, 0}, {6.12, 6.888199999999999}],
  559.           Offset[{-1.5, 0}, {6.12, 6.888199999999999}]}],
  560.         LineBox[{
  561.          Offset[{1.5, 0}, {6.12, 6.0488}],
  562.           Offset[{-1.5, 0}, {6.12, 6.0488}]}]}, {
  563.         LineBox[{{7.21, 7.2003}, {7.069999999999999, 7.2003}}],
  564.         LineBox[{
  565.          Offset[{0, 1.5}, {7.21, 7.2003}],
  566.           Offset[{0, -1.5}, {7.21, 7.2003}]}],
  567.         LineBox[{
  568.          Offset[{0, 1.5}, {7.069999999999999, 7.2003}],
  569.           Offset[{0, -1.5}, {7.069999999999999, 7.2003}]}],
  570.         LineBox[{{7.14, 7.3345}, {7.14, 7.0661000000000005`}}],
  571.         LineBox[{
  572.          Offset[{1.5, 0}, {7.14, 7.3345}],
  573.           Offset[{-1.5, 0}, {7.14, 7.3345}]}],
  574.         LineBox[{
  575.          Offset[{1.5, 0}, {7.14, 7.0661000000000005`}],
  576.           Offset[{-1.5, 0}, {7.14, 7.0661000000000005`}]}]}, {
  577.         LineBox[{{8.24, 8.2944}, {8.08, 8.2944}}],
  578.         LineBox[{
  579.          Offset[{0, 1.5}, {8.24, 8.2944}],
  580.           Offset[{0, -1.5}, {8.24, 8.2944}]}],
  581.         LineBox[{
  582.          Offset[{0, 1.5}, {8.08, 8.2944}],
  583.           Offset[{0, -1.5}, {8.08, 8.2944}]}],
  584.         LineBox[{{8.16, 8.524799999999999}, {8.16, 8.064}}],
  585.         LineBox[{
  586.          Offset[{1.5, 0}, {8.16, 8.524799999999999}],
  587.           Offset[{-1.5, 0}, {8.16, 8.524799999999999}]}],
  588.         LineBox[{
  589.          Offset[{1.5, 0}, {8.16, 8.064}],
  590.           Offset[{-1.5, 0}, {8.16, 8.064}]}]}}}, {}}},
  591. AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  592. Axes->True,
  593. AxesOrigin->{0, 0},
  594. PlotRange->{All, All},
  595. PlotRangeClipping->True,
  596. PlotRangePadding->{Automatic, Automatic}]\)
clone this paste RAW Paste Data