Guest User

ccl

a guest
Dec 18th, 2015
248
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 20.93 KB | None | 0 0
  1. # State file created: 2015/12/19 01:35:32
  2. # Build 16.0 2014.11.14-23.10-133146
  3.  
  4. LIBRARY:
  5. MATERIAL GROUP: Air Data
  6. Group Description = Ideal gas and constant property air. Constant \
  7. properties are for dry air at STP (0 C, 1 atm) and 25 C, 1 atm.
  8. END
  9. MATERIAL GROUP: CHT Solids
  10. Group Description = Pure solid substances that can be used for conjugate \
  11. heat transfer.
  12. END
  13. MATERIAL GROUP: Calorically Perfect Ideal Gases
  14. Group Description = Ideal gases with constant specific heat capacity. \
  15. Specific heat is evaluated at STP.
  16. END
  17. MATERIAL GROUP: Constant Property Gases
  18. Group Description = Gaseous substances with constant properties. \
  19. Properties are calculated at STP (0C and 1 atm). Can be combined with \
  20. NASA SP-273 materials for combustion modelling.
  21. END
  22. MATERIAL GROUP: Constant Property Liquids
  23. Group Description = Liquid substances with constant properties.
  24. END
  25. MATERIAL GROUP: Dry Peng Robinson
  26. Group Description = Materials with properties specified using the built \
  27. in Peng Robinson equation of state. Suitable for dry real gas modelling.
  28. END
  29. MATERIAL GROUP: Dry Redlich Kwong
  30. Group Description = Materials with properties specified using the built \
  31. in Redlich Kwong equation of state. Suitable for dry real gas modelling.
  32. END
  33. MATERIAL GROUP: Dry Soave Redlich Kwong
  34. Group Description = Materials with properties specified using the built \
  35. in Soave Redlich Kwong equation of state. Suitable for dry real gas \
  36. modelling.
  37. END
  38. MATERIAL GROUP: Dry Steam
  39. Group Description = Materials with properties specified using the IAPWS \
  40. equation of state. Suitable for dry steam modelling.
  41. END
  42. MATERIAL GROUP: Gas Phase Combustion
  43. Group Description = Ideal gas materials which can be use for gas phase \
  44. combustion. Ideal gas specific heat coefficients are specified using \
  45. the NASA SP-273 format.
  46. END
  47. MATERIAL GROUP: IAPWS IF97
  48. Group Description = Liquid, vapour and binary mixture materials which use \
  49. the IAPWS IF-97 equation of state. Materials are suitable for \
  50. compressible liquids, phase change calculations and dry steam flows.
  51. END
  52. MATERIAL GROUP: Interphase Mass Transfer
  53. Group Description = Materials with reference properties suitable for \
  54. performing either Eulerian or Lagrangian multiphase mass transfer \
  55. problems. Examples include cavitation, evaporation or condensation.
  56. END
  57. MATERIAL GROUP: Liquid Phase Combustion
  58. Group Description = Liquid and homogenous binary mixture materials which \
  59. can be included with Gas Phase Combustion materials if combustion \
  60. modelling also requires phase change (eg: evaporation) for certain \
  61. components.
  62. END
  63. MATERIAL GROUP: Particle Solids
  64. Group Description = Pure solid substances that can be used for particle \
  65. tracking
  66. END
  67. MATERIAL GROUP: Peng Robinson Dry Hydrocarbons
  68. Group Description = Common hydrocarbons which use the Peng Robinson \
  69. equation of state. Suitable for dry real gas models.
  70. END
  71. MATERIAL GROUP: Peng Robinson Dry Refrigerants
  72. Group Description = Common refrigerants which use the Peng Robinson \
  73. equation of state. Suitable for dry real gas models.
  74. END
  75. MATERIAL GROUP: Peng Robinson Dry Steam
  76. Group Description = Water materials which use the Peng Robinson equation \
  77. of state. Suitable for dry steam modelling.
  78. END
  79. MATERIAL GROUP: Peng Robinson Wet Hydrocarbons
  80. Group Description = Common hydrocarbons which use the Peng Robinson \
  81. equation of state. Suitable for condensing real gas models.
  82. END
  83. MATERIAL GROUP: Peng Robinson Wet Refrigerants
  84. Group Description = Common refrigerants which use the Peng Robinson \
  85. equation of state. Suitable for condensing real gas models.
  86. END
  87. MATERIAL GROUP: Peng Robinson Wet Steam
  88. Group Description = Water materials which use the Peng Robinson equation \
  89. of state. Suitable for condensing steam modelling.
  90. END
  91. MATERIAL GROUP: Real Gas Combustion
  92. Group Description = Real gas materials which can be use for gas phase \
  93. combustion. Ideal gas specific heat coefficients are specified using \
  94. the NASA SP-273 format.
  95. END
  96. MATERIAL GROUP: Redlich Kwong Dry Hydrocarbons
  97. Group Description = Common hydrocarbons which use the Redlich Kwong \
  98. equation of state. Suitable for dry real gas models.
  99. END
  100. MATERIAL GROUP: Redlich Kwong Dry Refrigerants
  101. Group Description = Common refrigerants which use the Redlich Kwong \
  102. equation of state. Suitable for dry real gas models.
  103. END
  104. MATERIAL GROUP: Redlich Kwong Dry Steam
  105. Group Description = Water materials which use the Redlich Kwong equation \
  106. of state. Suitable for dry steam modelling.
  107. END
  108. MATERIAL GROUP: Redlich Kwong Wet Hydrocarbons
  109. Group Description = Common hydrocarbons which use the Redlich Kwong \
  110. equation of state. Suitable for condensing real gas models.
  111. END
  112. MATERIAL GROUP: Redlich Kwong Wet Refrigerants
  113. Group Description = Common refrigerants which use the Redlich Kwong \
  114. equation of state. Suitable for condensing real gas models.
  115. END
  116. MATERIAL GROUP: Redlich Kwong Wet Steam
  117. Group Description = Water materials which use the Redlich Kwong equation \
  118. of state. Suitable for condensing steam modelling.
  119. END
  120. MATERIAL GROUP: Soave Redlich Kwong Dry Hydrocarbons
  121. Group Description = Common hydrocarbons which use the Soave Redlich Kwong \
  122. equation of state. Suitable for dry real gas models.
  123. END
  124. MATERIAL GROUP: Soave Redlich Kwong Dry Refrigerants
  125. Group Description = Common refrigerants which use the Soave Redlich Kwong \
  126. equation of state. Suitable for dry real gas models.
  127. END
  128. MATERIAL GROUP: Soave Redlich Kwong Dry Steam
  129. Group Description = Water materials which use the Soave Redlich Kwong \
  130. equation of state. Suitable for dry steam modelling.
  131. END
  132. MATERIAL GROUP: Soave Redlich Kwong Wet Hydrocarbons
  133. Group Description = Common hydrocarbons which use the Soave Redlich Kwong \
  134. equation of state. Suitable for condensing real gas models.
  135. END
  136. MATERIAL GROUP: Soave Redlich Kwong Wet Refrigerants
  137. Group Description = Common refrigerants which use the Soave Redlich Kwong \
  138. equation of state. Suitable for condensing real gas models.
  139. END
  140. MATERIAL GROUP: Soave Redlich Kwong Wet Steam
  141. Group Description = Water materials which use the Soave Redlich Kwong \
  142. equation of state. Suitable for condensing steam modelling.
  143. END
  144. MATERIAL GROUP: Soot
  145. Group Description = Solid substances that can be used when performing \
  146. soot modelling
  147. END
  148. MATERIAL GROUP: User
  149. Group Description = Materials that are defined by the user
  150. END
  151. MATERIAL GROUP: Water Data
  152. Group Description = Liquid and vapour water materials with constant \
  153. properties. Can be combined with NASA SP-273 materials for combustion \
  154. modelling.
  155. END
  156. MATERIAL GROUP: Wet Peng Robinson
  157. Group Description = Materials with properties specified using the built \
  158. in Peng Robinson equation of state. Suitable for wet real gas modelling.
  159. END
  160. MATERIAL GROUP: Wet Redlich Kwong
  161. Group Description = Materials with properties specified using the built \
  162. in Redlich Kwong equation of state. Suitable for wet real gas modelling.
  163. END
  164. MATERIAL GROUP: Wet Soave Redlich Kwong
  165. Group Description = Materials with properties specified using the built \
  166. in Soave Redlich Kwong equation of state. Suitable for wet real gas \
  167. modelling.
  168. END
  169. MATERIAL GROUP: Wet Steam
  170. Group Description = Materials with properties specified using the IAPWS \
  171. equation of state. Suitable for wet steam modelling.
  172. END
  173. MATERIAL: Air Ideal Gas
  174. Material Description = Air Ideal Gas (constant Cp)
  175. Material Group = Air Data, Calorically Perfect Ideal Gases
  176. Option = Pure Substance
  177. Thermodynamic State = Gas
  178. PROPERTIES:
  179. Option = General Material
  180. EQUATION OF STATE:
  181. Molar Mass = 28.96 [kg kmol^-1]
  182. Option = Ideal Gas
  183. END
  184. SPECIFIC HEAT CAPACITY:
  185. Option = Value
  186. Specific Heat Capacity = 1.0044E+03 [J kg^-1 K^-1]
  187. Specific Heat Type = Constant Pressure
  188. END
  189. REFERENCE STATE:
  190. Option = Specified Point
  191. Reference Pressure = 1 [atm]
  192. Reference Specific Enthalpy = 0. [J/kg]
  193. Reference Specific Entropy = 0. [J/kg/K]
  194. Reference Temperature = 25 [C]
  195. END
  196. DYNAMIC VISCOSITY:
  197. Dynamic Viscosity = 1.831E-05 [kg m^-1 s^-1]
  198. Option = Value
  199. END
  200. THERMAL CONDUCTIVITY:
  201. Option = Value
  202. Thermal Conductivity = 2.61E-2 [W m^-1 K^-1]
  203. END
  204. ABSORPTION COEFFICIENT:
  205. Absorption Coefficient = 0.01 [m^-1]
  206. Option = Value
  207. END
  208. SCATTERING COEFFICIENT:
  209. Option = Value
  210. Scattering Coefficient = 0.0 [m^-1]
  211. END
  212. REFRACTIVE INDEX:
  213. Option = Value
  214. Refractive Index = 1.0 [m m^-1]
  215. END
  216. END
  217. END
  218. MATERIAL: Air at 25 C
  219. Material Description = Air at 25 C and 1 atm (dry)
  220. Material Group = Air Data, Constant Property Gases
  221. Option = Pure Substance
  222. Thermodynamic State = Gas
  223. PROPERTIES:
  224. Option = General Material
  225. EQUATION OF STATE:
  226. Density = 1.185 [kg m^-3]
  227. Molar Mass = 28.96 [kg kmol^-1]
  228. Option = Value
  229. END
  230. SPECIFIC HEAT CAPACITY:
  231. Option = Value
  232. Specific Heat Capacity = 1.0044E+03 [J kg^-1 K^-1]
  233. Specific Heat Type = Constant Pressure
  234. END
  235. REFERENCE STATE:
  236. Option = Specified Point
  237. Reference Pressure = 1 [atm]
  238. Reference Specific Enthalpy = 0. [J/kg]
  239. Reference Specific Entropy = 0. [J/kg/K]
  240. Reference Temperature = 25 [C]
  241. END
  242. DYNAMIC VISCOSITY:
  243. Dynamic Viscosity = 1.831E-05 [kg m^-1 s^-1]
  244. Option = Value
  245. END
  246. THERMAL CONDUCTIVITY:
  247. Option = Value
  248. Thermal Conductivity = 2.61E-02 [W m^-1 K^-1]
  249. END
  250. ABSORPTION COEFFICIENT:
  251. Absorption Coefficient = 0.01 [m^-1]
  252. Option = Value
  253. END
  254. SCATTERING COEFFICIENT:
  255. Option = Value
  256. Scattering Coefficient = 0.0 [m^-1]
  257. END
  258. REFRACTIVE INDEX:
  259. Option = Value
  260. Refractive Index = 1.0 [m m^-1]
  261. END
  262. THERMAL EXPANSIVITY:
  263. Option = Value
  264. Thermal Expansivity = 0.003356 [K^-1]
  265. END
  266. END
  267. END
  268. MATERIAL: Aluminium
  269. Material Group = CHT Solids, Particle Solids
  270. Option = Pure Substance
  271. Thermodynamic State = Solid
  272. PROPERTIES:
  273. Option = General Material
  274. EQUATION OF STATE:
  275. Density = 2702 [kg m^-3]
  276. Molar Mass = 26.98 [kg kmol^-1]
  277. Option = Value
  278. END
  279. SPECIFIC HEAT CAPACITY:
  280. Option = Value
  281. Specific Heat Capacity = 9.03E+02 [J kg^-1 K^-1]
  282. END
  283. REFERENCE STATE:
  284. Option = Specified Point
  285. Reference Specific Enthalpy = 0 [J/kg]
  286. Reference Specific Entropy = 0 [J/kg/K]
  287. Reference Temperature = 25 [C]
  288. END
  289. THERMAL CONDUCTIVITY:
  290. Option = Value
  291. Thermal Conductivity = 237 [W m^-1 K^-1]
  292. END
  293. END
  294. END
  295. MATERIAL: Copper
  296. Material Group = CHT Solids, Particle Solids
  297. Option = Pure Substance
  298. Thermodynamic State = Solid
  299. PROPERTIES:
  300. Option = General Material
  301. EQUATION OF STATE:
  302. Density = 8933 [kg m^-3]
  303. Molar Mass = 63.55 [kg kmol^-1]
  304. Option = Value
  305. END
  306. SPECIFIC HEAT CAPACITY:
  307. Option = Value
  308. Specific Heat Capacity = 3.85E+02 [J kg^-1 K^-1]
  309. END
  310. REFERENCE STATE:
  311. Option = Specified Point
  312. Reference Specific Enthalpy = 0 [J/kg]
  313. Reference Specific Entropy = 0 [J/kg/K]
  314. Reference Temperature = 25 [C]
  315. END
  316. THERMAL CONDUCTIVITY:
  317. Option = Value
  318. Thermal Conductivity = 401.0 [W m^-1 K^-1]
  319. END
  320. END
  321. END
  322. MATERIAL: Soot
  323. Material Group = Soot
  324. Option = Pure Substance
  325. Thermodynamic State = Solid
  326. PROPERTIES:
  327. Option = General Material
  328. EQUATION OF STATE:
  329. Density = 2000 [kg m^-3]
  330. Molar Mass = 12 [kg kmol^-1]
  331. Option = Value
  332. END
  333. REFERENCE STATE:
  334. Option = Automatic
  335. END
  336. ABSORPTION COEFFICIENT:
  337. Absorption Coefficient = 0 [m^-1]
  338. Option = Value
  339. END
  340. END
  341. END
  342. MATERIAL: Steel
  343. Material Group = CHT Solids, Particle Solids
  344. Option = Pure Substance
  345. Thermodynamic State = Solid
  346. PROPERTIES:
  347. Option = General Material
  348. EQUATION OF STATE:
  349. Density = 7854 [kg m^-3]
  350. Molar Mass = 55.85 [kg kmol^-1]
  351. Option = Value
  352. END
  353. SPECIFIC HEAT CAPACITY:
  354. Option = Value
  355. Specific Heat Capacity = 4.34E+02 [J kg^-1 K^-1]
  356. END
  357. REFERENCE STATE:
  358. Option = Specified Point
  359. Reference Specific Enthalpy = 0 [J/kg]
  360. Reference Specific Entropy = 0 [J/kg/K]
  361. Reference Temperature = 25 [C]
  362. END
  363. THERMAL CONDUCTIVITY:
  364. Option = Value
  365. Thermal Conductivity = 60.5 [W m^-1 K^-1]
  366. END
  367. END
  368. END
  369. MATERIAL: Water
  370. Material Description = Water (liquid)
  371. Material Group = Water Data, Constant Property Liquids
  372. Option = Pure Substance
  373. Thermodynamic State = Liquid
  374. PROPERTIES:
  375. Option = General Material
  376. EQUATION OF STATE:
  377. Density = 997.0 [kg m^-3]
  378. Molar Mass = 18.02 [kg kmol^-1]
  379. Option = Value
  380. END
  381. SPECIFIC HEAT CAPACITY:
  382. Option = Value
  383. Specific Heat Capacity = 4181.7 [J kg^-1 K^-1]
  384. Specific Heat Type = Constant Pressure
  385. END
  386. REFERENCE STATE:
  387. Option = Specified Point
  388. Reference Pressure = 1 [atm]
  389. Reference Specific Enthalpy = 0.0 [J/kg]
  390. Reference Specific Entropy = 0.0 [J/kg/K]
  391. Reference Temperature = 25 [C]
  392. END
  393. DYNAMIC VISCOSITY:
  394. Dynamic Viscosity = 8.899E-4 [kg m^-1 s^-1]
  395. Option = Value
  396. END
  397. THERMAL CONDUCTIVITY:
  398. Option = Value
  399. Thermal Conductivity = 0.6069 [W m^-1 K^-1]
  400. END
  401. ABSORPTION COEFFICIENT:
  402. Absorption Coefficient = 1.0 [m^-1]
  403. Option = Value
  404. END
  405. SCATTERING COEFFICIENT:
  406. Option = Value
  407. Scattering Coefficient = 0.0 [m^-1]
  408. END
  409. REFRACTIVE INDEX:
  410. Option = Value
  411. Refractive Index = 1.0 [m m^-1]
  412. END
  413. THERMAL EXPANSIVITY:
  414. Option = Value
  415. Thermal Expansivity = 2.57E-04 [K^-1]
  416. END
  417. END
  418. END
  419. MATERIAL: Water Ideal Gas
  420. Material Description = Water Vapour Ideal Gas (100 C and 1 atm)
  421. Material Group = Calorically Perfect Ideal Gases, Water Data
  422. Option = Pure Substance
  423. Thermodynamic State = Gas
  424. PROPERTIES:
  425. Option = General Material
  426. EQUATION OF STATE:
  427. Molar Mass = 18.02 [kg kmol^-1]
  428. Option = Ideal Gas
  429. END
  430. SPECIFIC HEAT CAPACITY:
  431. Option = Value
  432. Specific Heat Capacity = 2080.1 [J kg^-1 K^-1]
  433. Specific Heat Type = Constant Pressure
  434. END
  435. REFERENCE STATE:
  436. Option = Specified Point
  437. Reference Pressure = 1.014 [bar]
  438. Reference Specific Enthalpy = 0. [J/kg]
  439. Reference Specific Entropy = 0. [J/kg/K]
  440. Reference Temperature = 100 [C]
  441. END
  442. DYNAMIC VISCOSITY:
  443. Dynamic Viscosity = 9.4E-06 [kg m^-1 s^-1]
  444. Option = Value
  445. END
  446. THERMAL CONDUCTIVITY:
  447. Option = Value
  448. Thermal Conductivity = 193E-04 [W m^-1 K^-1]
  449. END
  450. ABSORPTION COEFFICIENT:
  451. Absorption Coefficient = 1.0 [m^-1]
  452. Option = Value
  453. END
  454. SCATTERING COEFFICIENT:
  455. Option = Value
  456. Scattering Coefficient = 0.0 [m^-1]
  457. END
  458. REFRACTIVE INDEX:
  459. Option = Value
  460. Refractive Index = 1.0 [m m^-1]
  461. END
  462. END
  463. END
  464. END
  465. FLOW: Flow Analysis 1
  466. SOLUTION UNITS:
  467. Angle Units = [rad]
  468. Length Units = [m]
  469. Mass Units = [kg]
  470. Solid Angle Units = [sr]
  471. Temperature Units = [K]
  472. Time Units = [s]
  473. END
  474. ANALYSIS TYPE:
  475. Option = Steady State
  476. EXTERNAL SOLVER COUPLING:
  477. Option = None
  478. END
  479. END
  480. DOMAIN: Default Domain
  481. Coord Frame = Coord 0
  482. Domain Type = Fluid
  483. Location = B119
  484. BOUNDARY: domain
  485. Boundary Type = WALL
  486. Location = \
  487. F133.119,F134.119,F137.119,F138.119,F139.119,F140.119,F151.119,F152.11\
  488. 9,F155.119,F156.119,F163.119,F278.119,F280.119,F281.119,F282.119,F283.\
  489. 119,F284.119,F285.119,F286.119,F287.119,F288.119,F289.119,F290.119,F29\
  490. 1.119,F292.119,F293.119,F294.119,F295.119,F296.119,F297.119,F298.119,F\
  491. 299.119
  492. BOUNDARY CONDITIONS:
  493. MASS AND MOMENTUM:
  494. Option = No Slip Wall
  495. END
  496. WALL ROUGHNESS:
  497. Option = Smooth Wall
  498. END
  499. END
  500. END
  501. BOUNDARY: ground
  502. Boundary Type = WALL
  503. Location = ground
  504. BOUNDARY CONDITIONS:
  505. MASS AND MOMENTUM:
  506. Option = No Slip Wall
  507. WALL VELOCITY:
  508. Option = Cartesian Components
  509. Wall U = 15 [m s^-1]
  510. Wall V = 0 [m s^-1]
  511. Wall W = 0 [m s^-1]
  512. END
  513. END
  514. WALL ROUGHNESS:
  515. Option = Smooth Wall
  516. END
  517. END
  518. END
  519. BOUNDARY: inlet
  520. Boundary Type = INLET
  521. Location = inlet
  522. BOUNDARY CONDITIONS:
  523. FLOW REGIME:
  524. Option = Subsonic
  525. END
  526. MASS AND MOMENTUM:
  527. Normal Speed = 15 [m s^-1]
  528. Option = Normal Speed
  529. END
  530. TURBULENCE:
  531. Option = Medium Intensity and Eddy Viscosity Ratio
  532. END
  533. END
  534. END
  535. BOUNDARY: outlet
  536. Boundary Type = OUTLET
  537. Location = outlet
  538. BOUNDARY CONDITIONS:
  539. FLOW REGIME:
  540. Option = Subsonic
  541. END
  542. MASS AND MOMENTUM:
  543. Option = Average Static Pressure
  544. Pressure Profile Blend = 0.05
  545. Relative Pressure = 1 [atm]
  546. END
  547. PRESSURE AVERAGING:
  548. Option = Average Over Whole Outlet
  549. END
  550. END
  551. END
  552. BOUNDARY: symmetry
  553. Boundary Type = SYMMETRY
  554. Location = symmetry
  555. END
  556. DOMAIN MODELS:
  557. BUOYANCY MODEL:
  558. Option = Non Buoyant
  559. END
  560. DOMAIN MOTION:
  561. Option = Stationary
  562. END
  563. MESH DEFORMATION:
  564. Option = None
  565. END
  566. REFERENCE PRESSURE:
  567. Reference Pressure = 1 [atm]
  568. END
  569. END
  570. FLUID DEFINITION: Fluid 1
  571. Material = Air at 25 C
  572. Option = Material Library
  573. MORPHOLOGY:
  574. Option = Continuous Fluid
  575. END
  576. END
  577. FLUID MODELS:
  578. COMBUSTION MODEL:
  579. Option = None
  580. END
  581. HEAT TRANSFER MODEL:
  582. Fluid Temperature = 25 [C]
  583. Option = Isothermal
  584. END
  585. THERMAL RADIATION MODEL:
  586. Option = None
  587. END
  588. TURBULENCE MODEL:
  589. Option = SST
  590. END
  591. TURBULENT WALL FUNCTIONS:
  592. Option = Automatic
  593. END
  594. END
  595. INITIALISATION:
  596. Option = Automatic
  597. INITIAL CONDITIONS:
  598. Velocity Type = Cartesian
  599. CARTESIAN VELOCITY COMPONENTS:
  600. Option = Automatic
  601. END
  602. STATIC PRESSURE:
  603. Option = Automatic
  604. END
  605. TURBULENCE INITIAL CONDITIONS:
  606. Option = Medium Intensity and Eddy Viscosity Ratio
  607. END
  608. END
  609. END
  610. END
  611. OUTPUT CONTROL:
  612. MONITOR OBJECTS:
  613. MONITOR BALANCES:
  614. Option = Full
  615. END
  616. MONITOR FORCES:
  617. Option = Full
  618. END
  619. MONITOR PARTICLES:
  620. Option = Full
  621. END
  622. MONITOR POINT: Drag
  623. Coord Frame = Coord 0
  624. Expression Value = force_x()@domain
  625. Option = Expression
  626. END
  627. MONITOR POINT: Lift
  628. Coord Frame = Coord 0
  629. Expression Value = force_z()@domain
  630. Option = Expression
  631. END
  632. MONITOR RESIDUALS:
  633. Option = Full
  634. END
  635. MONITOR TOTALS:
  636. Option = Full
  637. END
  638. END
  639. RESULTS:
  640. File Compression Level = Default
  641. Option = Standard
  642. END
  643. END
  644. SOLVER CONTROL:
  645. Turbulence Numerics = First Order
  646. ADVECTION SCHEME:
  647. Option = High Resolution
  648. END
  649. CONVERGENCE CONTROL:
  650. Length Scale Option = Conservative
  651. Maximum Number of Iterations = 500
  652. Minimum Number of Iterations = 1
  653. Timescale Control = Auto Timescale
  654. Timescale Factor = 1.0
  655. END
  656. CONVERGENCE CRITERIA:
  657. Residual Target = 1.E-4
  658. Residual Type = RMS
  659. END
  660. DYNAMIC MODEL CONTROL:
  661. Global Dynamic Model Control = On
  662. END
  663. END
  664. END
  665. COMMAND FILE:
  666. Version = 16.0
  667. END
Advertisement
Add Comment
Please, Sign In to add comment