Advertisement
Guest User

Untitled

a guest
Jul 30th, 2015
202
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.43 KB | None | 0 0
  1. documentclass[a4paper,11pt]{book}
  2. usepackage[T1]{fontenc}
  3. usepackage[utf8]{inputenc}
  4. usepackage{lmodern}
  5. usepackage{classicthesis}
  6. usepackage{hyperref}
  7. usepackage{graphicx}
  8. usepackage[english]{babel}
  9. usepackage{amsmath,mathtools}
  10. usepackage{amsfonts}
  11. usepackage{color}
  12. usepackage{url}
  13. usepackage{enumitem}
  14. usepackage{multicol}
  15. usepackage{tabu}
  16. usepackage{amsthm}
  17. usepackage{fourier-orns}
  18. usepackage{framed}
  19. usepackage{tcolorbox}
  20. usepackage[toc,page]{appendix}
  21. usepackage[all]{xy}
  22.  
  23. begin{document}
  24.  
  25. begin{enumerate}
  26. item For the function $y=x,$ find the derivative, $y'.$
  27. [y'=lim_{hto 0}frac{(x+h)-x}{h}=lim_{hto 0}frac{h}{h}=lim_{hto 0}1=1.]
  28. item For the function $y=x^2,$ find the derivative, $y'.$
  29. begin{align*}
  30. y'=lim_{hto 0}frac{(x+h)^2-x^2}{h}&=lim_{hto 0}frac{x^2+2xh+h^2-x^2}{h}\
  31. &=lim_{hto 0}frac{2xh+h^2}{h}=lim_{hto 0}(2x+h)=2x.
  32. end{align*}
  33. begin{center}
  34. begin{framed}
  35. For the next two examples, we will use the angle sum formula for sine, which is
  36. [sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta.]
  37. end{framed}
  38. end{center}
  39. item For the function $y=sin x,$ find the derivative, $y'.$
  40. begin{align*}
  41. y'=lim_{hto 0}frac{sin (x+h)-sin x}{h}&=lim_{hto 0}frac{sin xcos h+cos xsin h-sin x}{h}\
  42. &=lim_{hto 0}frac{sin x(cos h-1)+cos xsin h}{h}\
  43. &=left[lim_{hto 0}(sin x)left(frac{cos h-1}{h}right)right]left[lim_{hto 0}(cos x)left(frac{sin h}{h}right)right]\
  44. &=(sin x)cdot 0+(cos x)cdot 1\
  45. &=cos x,
  46. end{align*}
  47. where we have used $displaystylelim_{hto 0}frac{sin h}{h}=1$ and $displaystylelim_{hto 0}frac{cos h-1}{h}=0$ from section (1.3).
  48. item Find $dfrac{d}{dx}tan x.$
  49. begin{align*}
  50. dfrac{d}{dx}tan x=displaystylelim_{hto 0}dfrac{tan(x+h)-tan x}{h}&=displaystylelim_{hto 0}left(dfrac{sin(x+h)}{hcos(x+h)}-dfrac{sin x}{hcos x}right)\
  51. &=displaystylelim_{hto 0}left(dfrac{sin(x+h)cos x-cos(x+h)sin x}{hcos(x+h)cos x}right)\
  52. &=displaystylelim_{hto 0}left(dfrac{sin[(x+h)-x]}{hcos(x+h)cos x}right)\
  53. &=displaystylelim_{hto 0}left[left(dfrac{sin h}{h}right)left(dfrac{1}{cos(x+h)cos x}right)right]\
  54. &=dfrac{1}{cos^2(x)}=sec^2 x.
  55. end{align*}
  56. end{enumerate}
  57.  
  58. end{document}
  59.  
  60. documentclass[a4paper,11pt]{book}
  61. usepackage[T1]{fontenc}
  62. usepackage[utf8]{inputenc}
  63. usepackage{lmodern}
  64. usepackage{classicthesis}
  65. usepackage{hyperref}
  66. usepackage{graphicx}
  67. usepackage[english]{babel}
  68. usepackage{amsmath,mathtools}
  69. usepackage{amsfonts}
  70. usepackage{color}
  71. usepackage{url}
  72. usepackage{enumitem}
  73. usepackage{multicol}
  74. usepackage{tabu}
  75. usepackage{amsthm}
  76. usepackage{fourier-orns}
  77. usepackage{framed}
  78. usepackage[many]{tcolorbox}
  79. usepackage[toc,page]{appendix}
  80. usepackage[all]{xy}
  81. usepackage[margin=2cm,showframe]{geometry}
  82.  
  83. begin{document}
  84.  
  85. begin{enumerate}
  86. item For the function $y=x,$ find the derivative, $y'.$
  87. [y'=lim_{hto 0}frac{(x+h)-x}{h}=lim_{hto 0}frac{h}{h}=lim_{hto 0}1=1.]
  88. item For the function $y=x^2,$ find the derivative, $y'.$
  89. begin{align*}
  90. y'=lim_{hto 0}frac{(x+h)^2-x^2}{h}&=lim_{hto 0}frac{x^2+2xh+h^2-x^2}{h}\
  91. &=lim_{hto 0}frac{2xh+h^2}{h}=lim_{hto 0}(2x+h)=2x.
  92. end{align*}
  93. begin{center}leavevmode
  94. begin{framed}
  95. For the next two examples, we will use the angle sum formula for sine, which is
  96. [sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta.]
  97. end{framed}
  98. end{center}
  99. makebox[linewidth]{%
  100. begin{tcolorbox}[arc=0pt,outer arc=0pt,colback=white,width=.6textwidth]
  101. For the next two examples, we will use the angle sum formula for sine, which is
  102. [sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta.]
  103. end{tcolorbox}}
  104. item For the function $y=sin x,$ find the derivative, $y'.$
  105. begin{align*}
  106. y'=lim_{hto 0}frac{sin (x+h)-sin x}{h}&=lim_{hto 0}frac{sin xcos h+cos xsin h-sin x}{h}\
  107. &=lim_{hto 0}frac{sin x(cos h-1)+cos xsin h}{h}\
  108. &=left[lim_{hto 0}(sin x)left(frac{cos h-1}{h}right)right]left[lim_{hto 0}(cos x)left(frac{sin h}{h}right)right]\
  109. &=(sin x)cdot 0+(cos x)cdot 1\
  110. &=cos x,
  111. end{align*}
  112. where we have used $displaystylelim_{hto 0}frac{sin h}{h}=1$ and $displaystylelim_{hto 0}frac{cos h-1}{h}=0$ from section (1.3).
  113. item Find $dfrac{d}{dx}tan x.$
  114. begin{align*}
  115. dfrac{d}{dx}tan x=displaystylelim_{hto 0}dfrac{tan(x+h)-tan x}{h}&=displaystylelim_{hto 0}left(dfrac{sin(x+h)}{hcos(x+h)}-dfrac{sin x}{hcos x}right)\
  116. &=displaystylelim_{hto 0}left(dfrac{sin(x+h)cos x-cos(x+h)sin x}{hcos(x+h)cos x}right)\
  117. &=displaystylelim_{hto 0}left(dfrac{sin[(x+h)-x]}{hcos(x+h)cos x}right)\
  118. &=displaystylelim_{hto 0}left[left(dfrac{sin h}{h}right)left(dfrac{1}{cos(x+h)cos x}right)right]\
  119. &=dfrac{1}{cos^2(x)}=sec^2 x.
  120. end{align*}
  121. end{enumerate}
  122.  
  123. end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement