Advertisement
KRITSADA

wiring.c avr\cores\arduino for UNO R3B

Jul 29th, 2016
175
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C++ 9.50 KB | None | 0 0
  1. /*
  2.   wiring.c - Partial implementation of the Wiring API for the ATmega8.
  3.   Part of Arduino - http://www.arduino.cc/
  4.  
  5.   Copyright (c) 2005-2006 David A. Mellis
  6.  
  7.   This library is free software; you can redistribute it and/or
  8.   modify it under the terms of the GNU Lesser General Public
  9.   License as published by the Free Software Foundation; either
  10.   version 2.1 of the License, or (at your option) any later version.
  11.  
  12.   This library is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.   Lesser General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU Lesser General
  18.   Public License along with this library; if not, write to the
  19.   Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  20.   Boston, MA  02111-1307  USA
  21.  
  22.   $Id$
  23. */
  24.  
  25. #include "wiring_private.h"
  26.  
  27. // the prescaler is set so that timer0 ticks every 64 clock cycles, and the
  28. // the overflow handler is called every 256 ticks.
  29. #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
  30.  
  31. // the whole number of milliseconds per timer0 overflow
  32. #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
  33.  
  34. // the fractional number of milliseconds per timer0 overflow. we shift right
  35. // by three to fit these numbers into a byte. (for the clock speeds we care
  36. // about - 8 and 16 MHz - this doesn't lose precision.)
  37. #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
  38. #define FRACT_MAX (1000 >> 3)
  39.  
  40. volatile unsigned long timer0_overflow_count = 0;
  41. volatile unsigned long timer0_millis = 0;
  42. static unsigned char timer0_fract = 0;
  43.  
  44. #if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
  45. ISR(TIM0_OVF_vect)
  46. #else
  47. ISR(TIMER0_OVF_vect)
  48. #endif
  49. {
  50.     // copy these to local variables so they can be stored in registers
  51.     // (volatile variables must be read from memory on every access)
  52.     unsigned long m = timer0_millis;
  53.     unsigned char f = timer0_fract;
  54.  
  55.     m += MILLIS_INC;
  56.     f += FRACT_INC;
  57.     if (f >= FRACT_MAX) {
  58.         f -= FRACT_MAX;
  59.         m += 1;
  60.     }
  61.  
  62.     timer0_fract = f;
  63.     timer0_millis = m;
  64.     timer0_overflow_count++;
  65. }
  66.  
  67. unsigned long millis()
  68. {
  69.     unsigned long m;
  70.     uint8_t oldSREG = SREG;
  71.  
  72.     // disable interrupts while we read timer0_millis or we might get an
  73.     // inconsistent value (e.g. in the middle of a write to timer0_millis)
  74.     cli();
  75.     m = timer0_millis;
  76.     SREG = oldSREG;
  77.  
  78.     return m;
  79. }
  80.  
  81. unsigned long micros() {
  82.     unsigned long m;
  83.     uint8_t oldSREG = SREG, t;
  84.    
  85.     cli();
  86.     m = timer0_overflow_count;
  87. #if defined(TCNT0)
  88.     t = TCNT0;
  89. #elif defined(TCNT0L)
  90.     t = TCNT0L;
  91. #else
  92.     #error TIMER 0 not defined
  93. #endif
  94.  
  95.  
  96. #ifdef TIFR0
  97.     if ((TIFR0 & _BV(TOV0)) && (t < 255))
  98.         m++;
  99. #else
  100.     if ((TIFR & _BV(TOV0)) && (t < 255))
  101.         m++;
  102. #endif
  103.  
  104.     SREG = oldSREG;
  105.    
  106.     return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
  107. }
  108.  
  109. void delay(unsigned long ms)
  110. {
  111.     uint16_t start = (uint16_t)micros();
  112.  
  113.     while (ms > 0) {
  114.         yield();
  115.         if (((uint16_t)micros() - start) >= 1000) {
  116.             ms--;
  117.             start += 1000;
  118.         }
  119.     }
  120. }
  121.  
  122. /* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */
  123. void delayMicroseconds(unsigned int us)
  124. {
  125.     // calling avrlib's delay_us() function with low values (e.g. 1 or
  126.     // 2 microseconds) gives delays longer than desired.
  127.     //delay_us(us);
  128. #if F_CPU >= 20000000L
  129.     // for the 20 MHz clock on rare Arduino boards
  130.  
  131.     // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
  132.     // of the function call yields a delay of exactly a one microsecond.
  133.     __asm__ __volatile__ (
  134.         "nop" "\n\t"
  135.         "nop"); //just waiting 2 cycle
  136.     if (--us == 0)
  137.         return;
  138.  
  139.     // the following loop takes a 1/5 of a microsecond (4 cycles)
  140.     // per iteration, so execute it five times for each microsecond of
  141.     // delay requested.
  142.     us = (us<<2) + us; // x5 us
  143.  
  144.     // account for the time taken in the preceeding commands.
  145.     us -= 2;
  146.  
  147. #elif F_CPU >= 16000000L
  148.     // for the 16 MHz clock on most Arduino boards
  149.  
  150.     // for a one-microsecond delay, simply return.  the overhead
  151.     // of the function call yields a delay of approximately 1 1/8 us.
  152.     if (--us == 0)
  153.         return;
  154.  
  155.     // the following loop takes a quarter of a microsecond (4 cycles)
  156.     // per iteration, so execute it four times for each microsecond of
  157.     // delay requested.
  158.     us <<= 2;
  159.  
  160.     // account for the time taken in the preceeding commands.
  161.     us -= 2;
  162. #else
  163.     // for the 8 MHz internal clock on the ATmega168
  164.  
  165.     // for a one- or two-microsecond delay, simply return.  the overhead of
  166.     // the function calls takes more than two microseconds.  can't just
  167.     // subtract two, since us is unsigned; we'd overflow.
  168.     if (--us == 0)
  169.         return;
  170.     if (--us == 0)
  171.         return;
  172.  
  173.     // the following loop takes half of a microsecond (4 cycles)
  174.     // per iteration, so execute it twice for each microsecond of
  175.     // delay requested.
  176.     us <<= 1;
  177.    
  178.     // partially compensate for the time taken by the preceeding commands.
  179.     // we can't subtract any more than this or we'd overflow w/ small delays.
  180.     us--;
  181. #endif
  182.  
  183.     // busy wait
  184.     __asm__ __volatile__ (
  185.         "1: sbiw %0,1" "\n\t" // 2 cycles
  186.         "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
  187.     );
  188. }
  189.  
  190. void init()
  191. {
  192.     // this needs to be called before setup() or some functions won't
  193.     // work there
  194.     sei();
  195.    
  196.     // on the ATmega168, timer 0 is also used for fast hardware pwm
  197.     // (using phase-correct PWM would mean that timer 0 overflowed half as often
  198.     // resulting in different millis() behavior on the ATmega8 and ATmega168)
  199. #if defined(TCCR0A) && defined(WGM01)
  200.     sbi(TCCR0A, WGM01);
  201.     sbi(TCCR0A, WGM00);
  202. #endif  
  203.  
  204.     // set timer 0 prescale factor to 64
  205. #if defined(__AVR_ATmega128__)
  206.     // CPU specific: different values for the ATmega128
  207.     sbi(TCCR0, CS02);
  208. #elif defined(TCCR0) && defined(CS01) && defined(CS00)
  209.     // this combination is for the standard atmega8
  210.     sbi(TCCR0, CS01);
  211.     sbi(TCCR0, CS00);
  212. #elif defined(TCCR0B) && defined(CS01) && defined(CS00)
  213.     // this combination is for the standard 168/328/1280/2560
  214.     sbi(TCCR0B, CS01);
  215.     sbi(TCCR0B, CS00);
  216. #elif defined(TCCR0A) && defined(CS01) && defined(CS00)
  217.     // this combination is for the __AVR_ATmega645__ series
  218.     sbi(TCCR0A, CS01);
  219.     sbi(TCCR0A, CS00);
  220. #else
  221.     #error Timer 0 prescale factor 64 not set correctly
  222. #endif
  223.  
  224.     // enable timer 0 overflow interrupt
  225. #if defined(TIMSK) && defined(TOIE0)
  226.     sbi(TIMSK, TOIE0);
  227. #elif defined(TIMSK0) && defined(TOIE0)
  228.     sbi(TIMSK0, TOIE0);
  229. #else
  230.     #error  Timer 0 overflow interrupt not set correctly
  231. #endif
  232.  
  233.     // timers 1 and 2 are used for phase-correct hardware pwm
  234.     // this is better for motors as it ensures an even waveform
  235.     // note, however, that fast pwm mode can achieve a frequency of up
  236.     // 8 MHz (with a 16 MHz clock) at 50% duty cycle
  237.  
  238. #if defined(TCCR1B) && defined(CS11) && defined(CS10)
  239.     TCCR1B = 0;
  240.  
  241.     // set timer 1 prescale factor to 64
  242.     sbi(TCCR1B, CS11);
  243. #if F_CPU >= 8000000L
  244.     sbi(TCCR1B, CS10);
  245. #endif
  246. #elif defined(TCCR1) && defined(CS11) && defined(CS10)
  247.     sbi(TCCR1, CS11);
  248. #if F_CPU >= 8000000L
  249.     sbi(TCCR1, CS10);
  250. #endif
  251. #endif
  252.     // put timer 1 in 8-bit phase correct pwm mode
  253. #if defined(TCCR1A) && defined(WGM10)
  254.     sbi(TCCR1A, WGM10);
  255. #elif defined(TCCR1)
  256.     #warning this needs to be finished
  257. #endif
  258.  
  259.     // set timer 2 prescale factor to 64
  260. #if defined(TCCR2) && defined(CS22)
  261.     sbi(TCCR2, CS22);
  262. #elif defined(TCCR2B) && defined(CS22)
  263.     sbi(TCCR2B, CS22);
  264. #else
  265.     #warning Timer 2 not finished (may not be present on this CPU)
  266. #endif
  267.  
  268.     // configure timer 2 for phase correct pwm (8-bit)
  269. #if defined(TCCR2) && defined(WGM20)
  270.     sbi(TCCR2, WGM20);
  271. #elif defined(TCCR2A) && defined(WGM20)
  272.     sbi(TCCR2A, WGM20);
  273. #else
  274.     #warning Timer 2 not finished (may not be present on this CPU)
  275. #endif
  276.  
  277. #if defined(TCCR3B) && defined(CS31) && defined(WGM30)
  278.     sbi(TCCR3B, CS31);      // set timer 3 prescale factor to 64
  279.     sbi(TCCR3B, CS30);
  280.     sbi(TCCR3A, WGM30);     // put timer 3 in 8-bit phase correct pwm mode
  281. #endif
  282.  
  283. #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
  284.     sbi(TCCR4B, CS42);      // set timer4 prescale factor to 64
  285.     sbi(TCCR4B, CS41);
  286.     sbi(TCCR4B, CS40);
  287.     sbi(TCCR4D, WGM40);     // put timer 4 in phase- and frequency-correct PWM mode
  288.     sbi(TCCR4A, PWM4A);     // enable PWM mode for comparator OCR4A
  289.     sbi(TCCR4C, PWM4D);     // enable PWM mode for comparator OCR4D
  290. #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
  291. #if defined(TCCR4B) && defined(CS41) && defined(WGM40)
  292.     sbi(TCCR4B, CS41);      // set timer 4 prescale factor to 64
  293.     sbi(TCCR4B, CS40);
  294.     sbi(TCCR4A, WGM40);     // put timer 4 in 8-bit phase correct pwm mode
  295. #endif
  296. #endif /* end timer4 block for ATMEGA1280/2560 and similar */  
  297.  
  298. #if defined(TCCR5B) && defined(CS51) && defined(WGM50)
  299.     sbi(TCCR5B, CS51);      // set timer 5 prescale factor to 64
  300.     sbi(TCCR5B, CS50);
  301.     sbi(TCCR5A, WGM50);     // put timer 5 in 8-bit phase correct pwm mode
  302. #endif
  303.  
  304. #if defined(ADCSRA)
  305.     // set a2d prescale factor to 128
  306.     // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
  307.     // XXX: this will not work properly for other clock speeds, and
  308.     // this code should use F_CPU to determine the prescale factor.
  309.     sbi(ADCSRA, ADPS2);
  310.     sbi(ADCSRA, ADPS1);
  311.     sbi(ADCSRA, ADPS0);
  312.  
  313.     // enable a2d conversions
  314.     sbi(ADCSRA, ADEN);
  315. #endif
  316.  
  317.     // the bootloader connects pins 0 and 1 to the USART; disconnect them
  318.     // here so they can be used as normal digital i/o; they will be
  319.     // reconnected in Serial.begin()
  320. #if defined(UCSRB)
  321.     UCSRB = 0;
  322. #elif defined(UCSR0B)
  323.     UCSR0B = 0;
  324. #endif
  325. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement