Guest User

Untitled

a guest
Nov 1st, 2015
376
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. Is the Gröbner basis ideal for a sparse polynomial description where degrees of variables in monomials are either zero or one?
  2.  
  3. Current Research outlined in (July 2015 Current Trends on Gröbner Bases — The 50th Anniversary of Gröbner Bases, http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/). I number the outlining below by the factors found on the websites.
  4.  
  5. Outlining the 2015 Conference Contributed Talks
  6.  
  7. (1) algebraic geometry community (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/01-ruriko-yoshida.pdf)
  8.  
  9. (2) applied mathematicians such as factor analysis, Bayesian analysis and inverse problems (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/02-richards.pdf)
  10.  
  11. (3) applied mathematicians using Monte Carlo but found it hard to use Markov basis or Gröbner basis (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/03-satoshi-aoki.pdf)
  12.  
  13. (7) GreenGroebner package in Mathematica with boundary value problems for Mechanical Engineering, Kirchhoff Circular Plates problem, differential equations (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/07-Jane-Lue.pdf)
  14.  
  15. (8) Hypergeometric polynomials aka Jacobi polynomials (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/08-nobuki-takayama.pdf)
  16.  
  17. (9) GR cells, extensions, extension algebras, affine varities, monomial ideals -- looks algebraically demanding (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/09-alexandru-constantinescu.pdf)
  18.  
  19. (11) !!!!! GR basis, polytopes, adjacency matrices and graph theory (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/11-ohsugi.pdf)
  20.  
  21. (12) !!!!! GR basis, toric ideals, polytopes (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/12_akihiro_higashitani.pdf)
  22.  
  23. (13) !!!!! Neural codes, toric ideals, GRs (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/13_Gross.pdf)
  24.  
  25. (14) !!!!! Many Toric ideals generated by quadratic binomials posess no quadratic Grobner bases (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/14_akihiro_shikama.pdf)
  26.  
  27. (16) !!!!!! Polyomino ideals, tiling problems (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/16_ayesha_qureshi.pdf)
  28.  
  29. (18) !!!!!! Cover ideal of very well covered graph  http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/18-kyouko-kimura.pdf
  30.  
  31. (20) Ehrhart polynomials (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/20-akiyoshi-tsuchiya.pdf)
  32.  
  33. (24) ??? F-thresholds and GR (hard to see to which area related, http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/contributed_talks/24-kazunori-matsuda.pdf)
  34.  
  35. Outlining the 2015 Conference Invited Talks (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/)
  36.  
  37. (I) !!!!!! Cocoa Software, GR, multivariate polynomials (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/bigatti.pdf)
  38.  
  39. (II) !!!!! Acyclic digraph, graph theory, covariance matrix, matrix algebra, vanishing ideal, GR basis (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/drton.pdf)
  40.  
  41. (III) !!!!! Tropicalisation: Pattern extraction, geometric to combinatorial, objects defined as ideals, GR basis, tropical varieties, Chan's algorithm (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/jensen.pdf)
  42.  
  43. (IV) !!!!!! Detecting binomality: matrix algebra, easy to undertand <3 (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/kahle.pdf)
  44.  
  45. (V) Non-commutative algebras (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/levadovskyy.pdf)
  46.  
  47. (VI) Equivariant GR (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/leykin.pdf)
  48.  
  49. (VII) Quadratic GR, Matroids, ... (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/michalek.pdf)
  50.  
  51. (VIII) ...
  52.  
  53. (IX) !!! Bouquet algebra and Toric ideals -- looks well presented with colours/annotation  (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/petrovic.pdf)
  54.  
  55. (X) !!!!! "The NBM [1] and LDP [2] algorithms are variants of the Buchberger-M¨oller algorithm for zero-dimensional ideals when the point coordinates are known up to a certain precision." -- Buchberger-M¨oller algorithm, vandermonde matrices, symbolic numeric approach, Newton like method to get f from NBM, Matlab code, algebraic statistics, Mahalanobis distance, -- http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/riccomagno.pdf -- applications contain robotics, image analysis.
  56.  
  57. (XI) !!!! Algebraic geometry to understand supersymmeric spaces in Physics: many Lagrangians optimizatons in Grobner bases: Mike Stillman, Bjarke Roune, software Macaulay2 "The code works for ideals in polynomial rings over finite prime fields. The result is not stashed in the ideal object. groebnerBasis(I, Strategy=>"MGB") -- or groebnerBasis(I, Strategy=>"F4")" -- open questions and looks intriquing! http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/stillman.pdf
  58.  
  59. (XII) Tensors: maximal minors form the GR basis (http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/sturmfels.pdf)
  60.  
  61. (XIII) Algebraic and geometric perspective on exponential families: http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/uhler.pdf
  62.  
  63. (XIIII) Diffferential equations, wishart distribution .... http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/vidunas.pdf
  64.  
  65. (H) http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/wang.pdf
  66.  
  67. (HI) !!!!! Monomial ideal method in tree percolation, reliability of system, probabilities -- applied mathematics: http://www.math.sci.osaka-u.ac.jp/~msj-si-2015/invited_talks_slides/wynn.pdf
  68.  
  69.  
  70. where I have bolded ideas looking relevant from Index of /~msj-si-2015/invited_talks_slides.
Advertisement
Add Comment
Please, Sign In to add comment