Advertisement
Guest User

Untitled

a guest
Jul 30th, 2015
275
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 7.21 KB | None | 0 0
  1. \documentclass[12pt]{article}
  2. \title{Electrolysis of Water and Aqueous Solutions}
  3. \author{Carlo Abelli \\ AP Chemistry --- Mr.\ Kern}
  4. \date{February 19, 2015}
  5.  
  6. \usepackage[margin=1.0in]{geometry}
  7.  
  8. \begin{document}
  9.  \begin{titlepage}
  10.    \maketitle
  11.    \thispagestyle{empty}
  12.  \end{titlepage}
  13.  \section{Water Electrolysis Calculations and Questions}
  14.  \subsection{Half Reaction for Each Electrode}
  15.  Cathode (reduction): \(2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}\)\\
  16.  This reaction took place at the cathode because during the splint test the gas
  17.  produced a popping sound, characteristic of hydrogen, a highly flammable gas.
  18.  \\
  19.  \\
  20.  Anode (oxidation): \(2H_{2}O_{(l)} \rightarrow O_{2(g)} + 4H^{+}_{(aq)} +
  21.   4e^{-}\)\\
  22.  This reaction took place at the anode because during the splint test the gas
  23.  reignited the splint ember, characteristic of oxygen.
  24.  \subsection{Overall Reaction}
  25.  \(2H_{2}O_{(l)} \rightarrow 2H_{2(g)} + O_{2(g)}\)
  26.  \subsection{Average Current}
  27.  Average Current: \(\frac{0.44 + 0.43 + 0.44 + 0.44 + 0.45 + 0.46 + 0.45 + 0.46
  28.    + 0.46 + 0.45 + 0.45 + 0.46 + 0.45 + 0.47 + 0.46}{15} = 0.45\)
  29.  \subsection{Amount of Hydrogen Produced in One Hour}
  30.  \(\frac{0.45\ coulombs}{1.00\ \sec} * \frac{60.0\ \sec}{1.00\ \min} *
  31.    \frac{60.0\ \min}{1.00\ hour} * \frac{1.00\ e^{-}}{1.60*10^{-19}\ coulombs} *
  32.    \frac{1.00\ mol\ e^{-}}{6.022*10^{23}\ e^{-}} * \frac{1.00\ mol\ H_{2}}
  33.    {2.00\ mol\ e^{-}} = 0.0084\ mol\ H_{2}\)\\
  34.  \(0.0084\ mol\ H_{2} * 22.4\ L/mol = 0.19\ L\ H_{2}\)\\
  35.  \(0.0084\ mol\ H_{2} * 2.016\ g/mol = 0.0017\ g\ H_{2}\)
  36.  \subsection{Amount of Time Needed to Produce 30 mL Oxygen Gas at
  37.  22\(^{\circ}\)C and 1.00 atm}
  38.  \(1.00\ atm * 0.030\ L = n * 0.08206\ L\ atm\ K^{-1}\ mol^{-1} * 295\ K\)\\
  39.  \(n = 0.0012\ mol\ O_{2}\)\\
  40.  \(0.0012\ mol\ O_{2} * \frac{4.00\ mol\ e^{-}}{1.00\ mol\ O_{2}} *
  41.    \frac{6.022*10^{23}\ e^{-}}{1.00\ mol\ e^{-}} *
  42.    \frac{1.60*10^{-19}\ coulombs}{1\ e^{-}} * \frac{1.00\ \sec}{0.45\ coulombs}
  43.    = 100.\ \sec\)
  44.  \subsection{Moles of Gas Produced in Experiment}
  45.  Cathode (Hydrogen)\\
  46.  \(P_{container} = 36.8\ cm\ H_{2}O * \frac{10.0\ mm}{1.00\ cm} *
  47.    \frac{1.08\ g\ H_{2}O} {1\ mL\ H_{2}O} * \frac{1\ mL\ Hg}
  48.    {13.534\ g\ Hg} + 751.1\ mm\ Hg = 780.5\ mm\ Hg\)\\
  49.  \(P_{gas} = P_{container} - P_{H_{2}O}\)\\
  50.  \(P_{gas} = 780.5\ mm\ Hg - 18.7\ mm\ Hg = 761.8\ mm\ Hg\)\\
  51.  \(761.8\ mm\ Hg * 0.0486\ L = n * 62.363\ L\ mmHg\ K^{-1}\ mol^{-1} * 294.0\ K\)
  52.  \\
  53.  \(n = 0.00202\ mol\ H_{2}\)\\
  54.  \\
  55.  Anode (Oxygen)\\
  56.  \(P_{container} = 24.0\ cm\ H_{2}O * \frac{10.0\ mm}{1.00\ cm} *
  57.    \frac{1.08\ g\ H_{2}O} {1\ mL\ H_{2}O} * \frac{1\ mL\ Hg}
  58.    {13.534\ g\ Hg} + 751.1\ mm\ Hg = 770.3\ mm\ Hg\)\\
  59.  \(P_{gas} = P_{container} - P_{H_{2}O}\)\\
  60.  \(P_{gas} = 770.3\ mm\ Hg - 18.7\ mm\ Hg = 751.6\ mm\ Hg\)\\
  61.  \(751.6\ mm\ Hg * 0.0239\ L = n * 62.363\ L\ mmHg\ K^{-1}\ mol^{-1} * 294.0\ K\)
  62.  \\
  63.  \(n = 0.000980\ mol\ O_{2}\)
  64.  \subsection{Theoretical Moles of Gas Produced}
  65.  Cathode (Hydrogen)\\
  66.  \(\frac{0.45\ coulombs}{1.00\ \sec} * \frac{60.0\ \sec}{1.00\ \min} * 14.0\ \min *
  67.    \frac{1.00\ e^{-}}{1.60*10^{-19}\ coulombs} * \frac{1.00\ mol\ e^{-}}
  68.    {6.022*10^{23}\ e^{-}} * \frac{1.00\ mol\ H_{2}}{2.00\ mol\ e^{-}} =
  69.    0.0020\ mol\ H_{2}\)\\
  70.  \\
  71.  Anode (Oxygen)\\
  72.  \(\frac{0.45\ coulombs}{1.00\ \sec} * \frac{60.0\ \sec}{1.00\ \min} * 14.0\ \min *
  73.    \frac{1.00\ e^{-}}{1.60*10^{-19}\ coulombs} * \frac{1.00\ mol\ e^{-}}
  74.    {6.022*10^{23}\ e^{-}} * \frac{1.00\ mol\ O_{2}}{4.00\ mol\ e^{-}} =
  75.    0.00098\ mol\ O_{2}\)
  76.  \subsection{Percent Deviation}
  77.  Cathode (Hydrogen)\\
  78.  \(\frac{0.00202\ mol - 0.0020\ mol}{0.0020\ mol} * 100 = 0.0\%\ deviation\)\\
  79.  \\
  80.  Anode (Oxygen)\\
  81.  \(\frac{0.000980\ mol - 0.00098\ mol}{0.00098\ mol} * 100 = 0.0\%\ deviation\)
  82.  \section{Aqueous KI, KBr and KCl Electrolysis Calculations and Questions}
  83.  \subsection{Half Reactions for Each Electrode}
  84.  \begin{tabular}{ l r @{\(\rightarrow\)} l }
  85.    KI Solution\\
  86.    Cathode (reduction): & \(2H_{2}O_{(l)} + 2e^{-}\) &
  87.      \(2OH^{-}_{(aq)} + H_{2(g)}\)\\
  88.    Anode (oxidation): & \(2I^{-}_{(aq)}\) & \(I_{2(s)} + 2e^{-}\)\\
  89.    \\
  90.    KBr Solution\\
  91.    Cathode (reduction): & \(2H_{2}O_{(l)} + 2e^{-}\) &
  92.      \(2OH^{-}_{(aq)} + H_{2(g)}\)\\
  93.    Anode (oxidation): & \(2Br^{-}_{(aq)}\) & \(Br_{2(l)} + 2e^{-}\)\\
  94.    \\
  95.    KCl Solution\\
  96.    Cathode (reduction): & \(2H_{2}O_{(l)} + 2e^{-}\) &
  97.      \(2OH^{-}_{(aq)} + H_{2(g)}\)\\
  98.    Anode (oxidation): & \(2Cl^{-}_{(aq)}\) & \(Cl_{2(g)} + 2e^{-}\)\\
  99.  \end{tabular}\\
  100.  \\
  101.  The water half reaction had to have occurred at the cathode because the
  102.  phenolphthalein indicator was activated by the creation of \(OH^{-}\),
  103.  creating the purple color observed at the cathode.\\
  104.  \\
  105.  The iodine, chlorine and bromine half reactions had to have occurred at the
  106.  anode because in the first experiment, a dark solid was created at the anode
  107.  (iodine), in the second experiment, a yellow liquid was observed (bromine)
  108.  and in the third experiment, a chlorine smelling gas was produced (chlorine).
  109.  \subsection{Overall Equations}
  110.  \begin{tabular}{ l r @{\(\rightarrow\)} l }
  111.    KI Solution: & \(KI_{(aq)} + 2H_{2}O_{(l)}\) & \(KOH_{(aq)} + 2H_{2(g)} +
  112.      I_{2(s)}\)\\
  113.    KBr Solution: & \(KBr_{(aq)} + 2H_{2}O_{(l)}\) & \(KOH_{(aq)} + 2H_{2(g)} +
  114.      Br_{2(l)}\)\\
  115.    KCl Solution: & \(KCl_{(aq)} + 2H_{2}O_{(l)}\) & \(KOH_{(aq)} + 2H_{2(g)} +
  116.      Cl_{2(g)}\)\\
  117.    Test Solution:
  118.  \end{tabular}
  119.  \subsection{Half Reactions and Overall Equation for Molten KI, KBr and KCl}
  120.  KI\\
  121.  \begin{tabular}{ l r @{\(\rightarrow\)} l }
  122.    Cathode (reduction): & \(K^{+}_{(l)} + e^{-}\) & \(K_{(s)}\)\\
  123.    Anode (oxidation): & \(2I^{-}_{(l)}\) & \(I_{2(s)} + 2e^{-}\)\\
  124.    Overall Equation: & \(2KI_{(l)}\) & \(2K_{(s)} + I_{2(s)}\)\\
  125.  \end{tabular}\\
  126.  \\
  127.  KBr\\
  128.  \begin{tabular}{ l r @{\(\rightarrow\)} l }
  129.    Cathode (reduction): & \(K^{+}_{(l)} + e^{-}\) & \(K_{(s)}\)\\
  130.    Anode (oxidation): & \(2Br^{-}_{(l)}\) & \(Br_{2(l)} + 2e^{-}\)\\
  131.    Overall Equation: & \(2KBr_{(l)}\) & \(2K_{(s)} + Br_{2(s)}\)\\
  132.  \end{tabular}\\
  133.  \\
  134.  KCl\\
  135.  \begin{tabular}{ l r @{\(\rightarrow\)} l }
  136.    Cathode (reduction): & \(K^{+}_{(l)} + e^{-}\) & \(K_{(s)}\)\\
  137.    Anode (oxidation): & \(2Cl^{-}_{(l)}\) & \(Cl_{2(g)} + 2e^{-}\)\\
  138.    Overall Equation: & \(2KCl_{(l)}\) & \(2K_{(s)} + Cl_{2(g)}\)\\
  139.  \end{tabular}
  140.  \subsection{Time Required to Produce 1.25 g Iodine at 0.75 amps}
  141.  \(1.25\ g\ I_{2} * \frac{1.00\ mol\ I_{2}}{253.80\ g} *
  142.    \frac{2.00\ mol\ e^{-}}{1.00\ mol\ I_{2}} *
  143.    \frac{6.022*10^{23}\ e^{-}}{1.00\ mol\ e^{-}} *
  144.    \frac{1.60*10^{-19}\ coulombs}{1.00\ e^{-}} *
  145.    \frac{1.00\ \sec}{0.75\ coulombs} *
  146.    \frac{1.00\ \min}{60.0\ \sec} = 21\ \min\)
  147.  \subsection{Time Required to Produce 0.100 L Hydrogen gas in Lab Conditions at
  148.    0.75 amps}
  149.  \(751.1\ mmHg * 0.100\ L\ H_{2} = n * 62.363\ L\ mmHg\ K^{-1}\ mol^{-1} *
  150.  294\ K\)\\
  151.  \(n = 0.00410\ mol\)\\
  152.  \(0.00410\ mol\ H_{2} * \frac{2.00\ mol\ e^{-}}{1.00\ mol\ H_{2}} *
  153.    \frac{6.022*10^{23}\ e^{-}}{1.00\ mol\ e^{-}} *
  154.    \frac{1.60*10^{-19}\ coulombs}{1.00\ e^{-}} *
  155.    \frac{1.00\ \sec}{0.75\ coulombs} * \frac{1.00\ \min}{60.0\ \sec} = 18\ \min\)
  156. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement