Pastebin launched a little side project called VERYVIRAL.com, check it out ;-) Want more features on Pastebin? Sign Up, it's FREE!

Mandelbrot One-Liner

By: simonjtyler on Dec 1st, 2011  |  syntax: None  |  size: 0.87 KB  |  views: 174  |  expires: Never
download  |  raw  |  embed  |  report abuse  |  print
Text below is selected. Please press Ctrl+C to copy to your clipboard. (⌘+C on Mac)
  1. (* http://blog.wolfram.com/2011/12/01/the-2011-mathematica-one-liner-competition/ *)
  2. (* Stephan Leibbrandt's Mandelbrot one-liner *)
  3.  
  4.  
  5. (* Escape times for Mandelbrot set *)
  6.  
  7. data = Compile[{}, Block[{i, x, p},
  8.      Table[i = 0; x = 0. I; p = r + I c;
  9.       While[Abs@x <= Sqrt[2] && i < 9^3, x = x^2 + p; ++i];
  10.       i, {c, -1, 1, .01}, {r, -2, 1, .01}]]][];
  11.  
  12.  
  13. (* Examine behaviour of scaling function tanh *)
  14.  
  15. Manipulate[Plot[Tanh[Power[x/c, (i)^-1]], {x, .1, 9^3},
  16.   PlotRange -> {0, 1}], {c, 1, 729}, {i, 1, 10}]
  17.  
  18.  
  19. (* Note that image interprets a 2d array of numbers as a grayscale data. *)
  20. (* Numbers outside of [0,1] are truncated. As a simple example, play with *)
  21.  
  22. Image[Table[i*j/100, {i, 10}, {j, 10}]]
  23.  
  24.  
  25. (* Produce a range of Mandelbrot images *)
  26.  
  27. Table[{i, c, Image[Tanh[Power[data/9.0^c, (i)^-1]],
  28.   ImageSize -> Small]}, {i, 2, 10}, {c, 1, 3}]