Advertisement
Guest User

Untitled

a guest
Nov 25th, 2015
69
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.98 KB | None | 0 0
  1. import tensorflow as tf
  2. import numpy as np
  3. import data.generate_RGB
  4.  
  5. num_epochs = 5
  6. width = 28
  7. height = 28
  8. num_categories = 3
  9. num_channels = 3
  10. batch_size = 100 # for my sanity
  11. num_training_examples = 5000
  12. num_batches = num_training_examples/batch_size
  13.  
  14. def weight_variable(shape):
  15. initial = tf.truncated_normal(shape, stddev=0.1)
  16. return tf.Variable(initial)
  17.  
  18. def bias_variable(shape):
  19. initial = tf.constant(0.1, shape=shape)
  20. return tf.Variable(initial)
  21.  
  22. def conv2d(x, W):
  23. return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
  24.  
  25. def max_pool_2x2(x):
  26. return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
  27. strides=[1, 2, 2, 1], padding='SAME')
  28.  
  29. x = tf.placeholder("float", shape=[None, height, width, num_channels])
  30. x_image = tf.reshape(x, [-1,width,height,num_channels])
  31. y_ = tf.placeholder("float", shape=[None, num_categories])
  32.  
  33. #1st conv layer
  34. W_conv1 = weight_variable([5, 5, num_channels, 32]) #5x5 conv window, 3 channel, 32 feature maps
  35. b_conv1 = bias_variable([32])
  36. h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
  37. h_pool1 = max_pool_2x2(h_conv1)
  38.  
  39. #2nd conv layer
  40. W_conv2 = weight_variable([5, 5, 32, 64])
  41. b_conv2 = bias_variable([64])
  42. h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
  43. h_pool2 = max_pool_2x2(h_conv2)
  44.  
  45. #fully connected layer
  46. W_fc1 = weight_variable([7 * 7 * 64, 1024])
  47. b_fc1 = bias_variable([1024])
  48. h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
  49. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
  50.  
  51. #droupout
  52. keep_prob = tf.placeholder("float")
  53. h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
  54.  
  55. #softmax output layer
  56. W_fc2 = weight_variable([1024, num_categories])
  57. b_fc2 = bias_variable([num_categories])
  58. y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
  59.  
  60. #saving model
  61. saver = tf.train.Saver()
  62.  
  63. #load dataset
  64. d = data.generate_RGB.GenerateRGB(height, width, 0.05)
  65. dataset = d.generate_data(num_training_examples)
  66. xs = dataset[0]
  67. ys = dataset[1]
  68. xs = np.split(xs, num_batches) #split into 50 minibatches of size (5000/50)=100
  69. ys = np.split(ys, num_batches)
  70.  
  71. dataset_validation = d.generate_data(500)
  72. xs_v = dataset_validation[0]
  73. ys_v = dataset_validation[1]
  74. xs_v = np.split(xs_v, 50) #split into 50 minibatches of size (500/50)=10 ????
  75. ys_v = np.split(ys_v, 50)
  76.  
  77. #train and evaluate
  78. with tf.Session() as sess:
  79. cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
  80. train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
  81. correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
  82. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  83. sess.run(tf.initialize_all_variables())
  84. for j in range(num_epochs):
  85. for i in range(50):
  86. train_step.run(feed_dict={x: xs[i], y_: ys[i], keep_prob: 0.5})
  87.  
  88. print "=== EPOCH: " + str(j) + " ==="
  89. print "test accuracy: %g \n"%accuracy.eval(feed_dict={
  90. x: xs_v[i], y_: ys_v[i], keep_prob: 1.0})
  91.  
  92. saver.save(sess, "conv_nets/model.ckpt")
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement