Advertisement
Guest User

fann.h

a guest
Oct 11th, 2013
326
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C 20.41 KB | None | 0 0
  1. /*
  2. Fast Artificial Neural Network Library (fann)
  3. Copyright (C) 2003-2012 Steffen Nissen ([email protected])
  4.  
  5. This library is free software; you can redistribute it and/or
  6. modify it under the terms of the GNU Lesser General Public
  7. License as published by the Free Software Foundation; either
  8. version 2.1 of the License, or (at your option) any later version.
  9.  
  10. This library is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13. Lesser General Public License for more details.
  14.  
  15. You should have received a copy of the GNU Lesser General Public
  16. License along with this library; if not, write to the Free Software
  17. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18. */  
  19.    
  20. /* This file defines the user interface to the fann library.
  21.    It is included from fixedfann.h, floatfann.h and doublefann.h and should
  22.    NOT be included directly. If included directly it will react as if
  23.    floatfann.h was included.
  24. */
  25.  
  26. /* Section: FANN Creation/Execution
  27.    
  28.    The FANN library is designed to be very easy to use.
  29.    A feedforward ann can be created by a simple <fann_create_standard> function, while
  30.    other ANNs can be created just as easily. The ANNs can be trained by <fann_train_on_file>
  31.    and executed by <fann_run>.
  32.    
  33.    All of this can be done without much knowledge of the internals of ANNs, although the ANNs created will
  34.    still be powerfull and effective. If you have more knowledge about ANNs, and desire more control, almost
  35.    every part of the ANNs can be parametized to create specialized and highly optimal ANNs.
  36.  */
  37. /* Group: Creation, Destruction & Execution */
  38.    
  39. #ifndef FANN_INCLUDE
  40. /* just to allow for inclusion of fann.h in normal stuations where only floats are needed */
  41. #ifdef FIXEDFANN
  42. #include "fixedfann.h"
  43. #else
  44. #include "floatfann.h"
  45. #endif  /* FIXEDFANN  */
  46.    
  47. #else
  48.    
  49. /* COMPAT_TIME REPLACEMENT */
  50. #ifndef _WIN32
  51. #include <sys/time.h>
  52. #else   /* _WIN32 */
  53. #if !defined(_MSC_EXTENSIONS) && !defined(_INC_WINDOWS)  
  54. extern unsigned long __stdcall GetTickCount(void);
  55.  
  56. #else   /* _MSC_EXTENSIONS */
  57. #define WIN32_LEAN_AND_MEAN
  58. #include <windows.h>
  59. #endif  /* _MSC_EXTENSIONS */
  60. #endif  /* _WIN32 */
  61.        
  62. #ifndef __fann_h__
  63. #define __fann_h__
  64.    
  65. #ifdef __cplusplus
  66. extern "C"
  67. {
  68.    
  69. #ifndef __cplusplus
  70. } /* to fool automatic indention engines */
  71. #endif
  72. #endif  /* __cplusplus */
  73.  
  74. #ifndef NULL
  75. #define NULL 0
  76. #endif  /* NULL */
  77.  
  78. /* ----- Macros used to define DLL external entrypoints ----- */
  79. /*
  80.  DLL Export, import and calling convention for Windows.
  81.  Only defined for Microsoft VC++ FANN_EXTERNAL indicates
  82.  that a function will be exported/imported from a dll
  83.  FANN_API ensures that the DLL calling convention
  84.  will be used for  a function regardless of the calling convention
  85.  used when compiling.
  86.  
  87.  For a function to be exported from a DLL its prototype and
  88.  declaration must be like this:
  89.     FANN_EXTERNAL void FANN_API function(char *argument)
  90.  
  91.  The following ifdef block is a way of creating macros which
  92.  make exporting from a DLL simple. All files within a DLL are
  93.  compiled with the FANN_DLL_EXPORTS symbol defined on the
  94.  command line. This symbol should not be defined on any project
  95.  that uses this DLL. This way any other project whose source
  96.  files include this file see FANN_EXTERNAL functions as being imported
  97.  from a DLL, whereas a DLL sees symbols defined with this
  98.  macro as being exported which makes calls more efficient.
  99.  The __stdcall calling convention is used for functions in a
  100.  windows DLL.
  101.  
  102.  The callback functions for fann_set_callback must be declared as FANN_API
  103.  so the DLL and the application program both use the same
  104.  calling convention.
  105. */
  106.  
  107. /*
  108.  The following sets the default for MSVC++ 2003 or later to use
  109.  the fann dll's. To use a lib or fixedfann.c, floatfann.c or doublefann.c
  110.  with those compilers FANN_NO_DLL has to be defined before
  111.  including the fann headers.
  112.  The default for previous MSVC compilers such as VC++ 6 is not
  113.  to use dll's. To use dll's FANN_USE_DLL has to be defined before
  114.  including the fann headers.
  115. */
  116. #if (_MSC_VER > 1300)
  117. #ifndef FANN_NO_DLL
  118. #define FANN_USE_DLL
  119. #endif  /* FANN_USE_LIB */
  120. #endif  /* _MSC_VER */
  121. #if defined(_MSC_VER) && (defined(FANN_USE_DLL) || defined(FANN_DLL_EXPORTS))
  122. #ifdef FANN_DLL_EXPORTS
  123. #define FANN_EXTERNAL __declspec(dllexport)
  124. #else                           /*  */
  125. #define FANN_EXTERNAL __declspec(dllimport)
  126. #endif  /* FANN_DLL_EXPORTS*/
  127. #define FANN_API __stdcall
  128. #else                           /*  */
  129. #define FANN_EXTERNAL
  130. #define FANN_API
  131. #endif  /* _MSC_VER */
  132. /* ----- End of macros used to define DLL external entrypoints ----- */
  133.  
  134. #include "fann_error.h"
  135. #include "fann_activation.h"
  136. #include "fann_data.h"
  137. #include "fann_internal.h"
  138. #include "fann_train.h"
  139. #include "fann_cascade.h"
  140. #include "fann_io.h"
  141.  
  142. /* Function: fann_create_standard
  143.    
  144.     Creates a standard fully connected backpropagation neural network.
  145.  
  146.     There will be a bias neuron in each layer (except the output layer),
  147.     and this bias neuron will be connected to all neurons in the next layer.
  148.     When running the network, the bias nodes always emits 1.
  149.    
  150.     To destroy a <struct fann> use the <fann_destroy> function.
  151.  
  152.     Parameters:
  153.         num_layers - The total number of layers including the input and the output layer.
  154.         ... - Integer values determining the number of neurons in each layer starting with the
  155.             input layer and ending with the output layer.
  156.            
  157.     Returns:
  158.         A pointer to the newly created <struct fann>.
  159.            
  160.     Example:
  161.         > // Creating an ANN with 2 input neurons, 1 output neuron,
  162.         > // and two hidden neurons with 8 and 9 neurons
  163.         > struct fann *ann = fann_create_standard(4, 2, 8, 9, 1);
  164.        
  165.     See also:
  166.         <fann_create_standard_array>, <fann_create_sparse>, <fann_create_shortcut>     
  167.        
  168.     This function appears in FANN >= 2.0.0.
  169. */
  170. FANN_EXTERNAL struct fann *FANN_API fann_create_standard(unsigned int num_layers, ...);
  171.  
  172. /* Function: fann_create_standard_array
  173.    Just like <fann_create_standard>, but with an array of layer sizes
  174.    instead of individual parameters.
  175.  
  176.     Example:
  177.         > // Creating an ANN with 2 input neurons, 1 output neuron,
  178.         > // and two hidden neurons with 8 and 9 neurons
  179.         > unsigned int layers[4] = {2, 8, 9, 1};
  180.         > struct fann *ann = fann_create_standard_array(4, layers);
  181.  
  182.     See also:
  183.         <fann_create_standard>, <fann_create_sparse>, <fann_create_shortcut>
  184.  
  185.     This function appears in FANN >= 2.0.0.
  186. */
  187. FANN_EXTERNAL struct fann *FANN_API fann_create_standard_array(unsigned int num_layers,
  188.                                                                const unsigned int *layers);
  189.  
  190. /* Function: fann_create_sparse
  191.  
  192.     Creates a standard backpropagation neural network, which is not fully connected.
  193.  
  194.     Parameters:
  195.         connection_rate - The connection rate controls how many connections there will be in the
  196.             network. If the connection rate is set to 1, the network will be fully
  197.             connected, but if it is set to 0.5 only half of the connections will be set.
  198.             A connection rate of 1 will yield the same result as <fann_create_standard>
  199.         num_layers - The total number of layers including the input and the output layer.
  200.         ... - Integer values determining the number of neurons in each layer starting with the
  201.             input layer and ending with the output layer.
  202.            
  203.     Returns:
  204.         A pointer to the newly created <struct fann>.
  205.  
  206.     See also:
  207.         <fann_create_sparse_array>, <fann_create_standard>, <fann_create_shortcut>
  208.  
  209.     This function appears in FANN >= 2.0.0.
  210. */
  211. FANN_EXTERNAL struct fann *FANN_API fann_create_sparse(float connection_rate,
  212.                                                        unsigned int num_layers, ...);
  213.  
  214.  
  215. /* Function: fann_create_sparse_array
  216.    Just like <fann_create_sparse>, but with an array of layer sizes
  217.    instead of individual parameters.
  218.  
  219.     See <fann_create_standard_array> for a description of the parameters.
  220.  
  221.     See also:
  222.         <fann_create_sparse>, <fann_create_standard>, <fann_create_shortcut>
  223.  
  224.     This function appears in FANN >= 2.0.0.
  225. */
  226. FANN_EXTERNAL struct fann *FANN_API fann_create_sparse_array(float connection_rate,
  227.                                                              unsigned int num_layers,
  228.                                                              const unsigned int *layers);
  229.  
  230. /* Function: fann_create_shortcut
  231.  
  232.     Creates a standard backpropagation neural network, which is not fully connected and which
  233.     also has shortcut connections.
  234.  
  235.     Shortcut connections are connections that skip layers. A fully connected network with shortcut
  236.     connections, is a network where all neurons are connected to all neurons in later layers.
  237.     Including direct connections from the input layer to the output layer.
  238.  
  239.     See <fann_create_standard> for a description of the parameters.
  240.  
  241.     See also:
  242.         <fann_create_shortcut_array>, <fann_create_standard>, <fann_create_sparse>,
  243.  
  244.     This function appears in FANN >= 2.0.0.
  245. */
  246. FANN_EXTERNAL struct fann *FANN_API fann_create_shortcut(unsigned int num_layers, ...);
  247.  
  248. /* Function: fann_create_shortcut_array
  249.    Just like <fann_create_shortcut>, but with an array of layer sizes
  250.    instead of individual parameters.
  251.  
  252.     See <fann_create_standard_array> for a description of the parameters.
  253.  
  254.     See also:
  255.         <fann_create_shortcut>, <fann_create_standard>, <fann_create_sparse>
  256.  
  257.     This function appears in FANN >= 2.0.0.
  258. */
  259. FANN_EXTERNAL struct fann *FANN_API fann_create_shortcut_array(unsigned int num_layers,
  260.                                                                const unsigned int *layers);
  261. /* Function: fann_destroy
  262.    Destroys the entire network and properly freeing all the associated memmory.
  263.  
  264.     This function appears in FANN >= 1.0.0.
  265. */
  266. FANN_EXTERNAL void FANN_API fann_destroy(struct fann *ann);
  267.  
  268.  
  269. /* Function: fann_copy
  270.    Creates a copy of a fann structure.
  271.    
  272.    Data in the user data <fann_set_user_data> is not copied, but the user data pointer is copied.
  273.  
  274.     This function appears in FANN >= 2.2.0.
  275. */
  276. FANN_EXTERNAL struct fann * FANN_API fann_copy(struct fann *ann);
  277.  
  278.  
  279. /* Function: fann_run
  280.     Will run input through the neural network, returning an array of outputs, the number of which being
  281.     equal to the number of neurons in the output layer.
  282.  
  283.     See also:
  284.         <fann_test>
  285.  
  286.     This function appears in FANN >= 1.0.0.
  287. */
  288. FANN_EXTERNAL fann_type * FANN_API fann_run(struct fann *ann, fann_type * input);
  289.  
  290. /* Function: fann_randomize_weights
  291.     Give each connection a random weight between *min_weight* and *max_weight*
  292.    
  293.     From the beginning the weights are random between -0.1 and 0.1.
  294.  
  295.     See also:
  296.         <fann_init_weights>
  297.  
  298.     This function appears in FANN >= 1.0.0.
  299. */
  300. FANN_EXTERNAL void FANN_API fann_randomize_weights(struct fann *ann, fann_type min_weight,
  301.                                                    fann_type max_weight);
  302.  
  303. /* Function: fann_init_weights
  304.     Initialize the weights using Widrow + Nguyen's algorithm.
  305.    
  306.     This function behaves similarly to fann_randomize_weights. It will use the algorithm developed
  307.     by Derrick Nguyen and Bernard Widrow to set the weights in such a way
  308.     as to speed up training. This technique is not always successful, and in some cases can be less
  309.     efficient than a purely random initialization.
  310.  
  311.     The algorithm requires access to the range of the input data (ie, largest and smallest input),
  312.     and therefore accepts a second argument, data, which is the training data that will be used to
  313.     train the network.
  314.  
  315.     See also:
  316.         <fann_randomize_weights>, <fann_read_train_from_file>
  317.  
  318.     This function appears in FANN >= 1.1.0.
  319. */
  320. FANN_EXTERNAL void FANN_API fann_init_weights(struct fann *ann, struct fann_train_data *train_data);
  321.  
  322. /* Function: fann_print_connections
  323.     Will print the connections of the ann in a compact matrix, for easy viewing of the internals
  324.     of the ann.
  325.  
  326.     The output from fann_print_connections on a small (2 2 1) network trained on the xor problem
  327.     >Layer / Neuron 012345
  328.     >L   1 / N    3 BBa...
  329.     >L   1 / N    4 BBA...
  330.     >L   1 / N    5 ......
  331.     >L   2 / N    6 ...BBA
  332.     >L   2 / N    7 ......
  333.          
  334.     This network have five real neurons and two bias neurons. This gives a total of seven neurons
  335.     named from 0 to 6. The connections between these neurons can be seen in the matrix. "." is a
  336.     place where there is no connection, while a character tells how strong the connection is on a
  337.     scale from a-z. The two real neurons in the hidden layer (neuron 3 and 4 in layer 1) has
  338.     connection from the three neurons in the previous layer as is visible in the first two lines.
  339.     The output neuron (6) has connections form the three neurons in the hidden layer 3 - 5 as is
  340.     visible in the fourth line.
  341.  
  342.     To simplify the matrix output neurons is not visible as neurons that connections can come from,
  343.     and input and bias neurons are not visible as neurons that connections can go to.
  344.  
  345.     This function appears in FANN >= 1.2.0.
  346. */
  347. FANN_EXTERNAL void FANN_API fann_print_connections(struct fann *ann);
  348.  
  349. /* Group: Parameters */
  350. /* Function: fann_print_parameters
  351.  
  352.     Prints all of the parameters and options of the ANN
  353.  
  354.     This function appears in FANN >= 1.2.0.
  355. */
  356. FANN_EXTERNAL void FANN_API fann_print_parameters(struct fann *ann);
  357.  
  358.  
  359. /* Function: fann_get_num_input
  360.  
  361.    Get the number of input neurons.
  362.  
  363.     This function appears in FANN >= 1.0.0.
  364. */
  365. FANN_EXTERNAL unsigned int FANN_API fann_get_num_input(struct fann *ann);
  366.  
  367.  
  368. /* Function: fann_get_num_output
  369.  
  370.    Get the number of output neurons.
  371.  
  372.     This function appears in FANN >= 1.0.0.
  373. */
  374. FANN_EXTERNAL unsigned int FANN_API fann_get_num_output(struct fann *ann);
  375.  
  376.  
  377. /* Function: fann_get_total_neurons
  378.  
  379.    Get the total number of neurons in the entire network. This number does also include the
  380.     bias neurons, so a 2-4-2 network has 2+4+2 +2(bias) = 10 neurons.
  381.  
  382.     This function appears in FANN >= 1.0.0.
  383. */
  384. FANN_EXTERNAL unsigned int FANN_API fann_get_total_neurons(struct fann *ann);
  385.  
  386.  
  387. /* Function: fann_get_total_connections
  388.  
  389.    Get the total number of connections in the entire network.
  390.  
  391.     This function appears in FANN >= 1.0.0.
  392. */
  393. FANN_EXTERNAL unsigned int FANN_API fann_get_total_connections(struct fann *ann);
  394.  
  395. /* Function: fann_get_network_type
  396.  
  397.     Get the type of neural network it was created as.
  398.  
  399.     Parameters:
  400.         ann - A previously created neural network structure of
  401.             type <struct fann> pointer.
  402.  
  403.     Returns:
  404.         The neural network type from enum <fann_network_type_enum>
  405.  
  406.     See Also:
  407.         <fann_network_type_enum>
  408.  
  409.    This function appears in FANN >= 2.1.0
  410. */
  411. FANN_EXTERNAL enum fann_nettype_enum FANN_API fann_get_network_type(struct fann *ann);
  412.  
  413. /* Function: fann_get_connection_rate
  414.  
  415.     Get the connection rate used when the network was created
  416.  
  417.     Parameters:
  418.         ann - A previously created neural network structure of
  419.             type <struct fann> pointer.
  420.  
  421.     Returns:
  422.         The connection rate
  423.  
  424.    This function appears in FANN >= 2.1.0
  425. */
  426. FANN_EXTERNAL float FANN_API fann_get_connection_rate(struct fann *ann);
  427.  
  428. /* Function: fann_get_num_layers
  429.  
  430.     Get the number of layers in the network
  431.  
  432.     Parameters:
  433.         ann - A previously created neural network structure of
  434.             type <struct fann> pointer.
  435.            
  436.     Returns:
  437.         The number of layers in the neural network
  438.            
  439.     Example:
  440.         > // Obtain the number of layers in a neural network
  441.         > struct fann *ann = fann_create_standard(4, 2, 8, 9, 1);
  442.         > unsigned int num_layers = fann_get_num_layers(ann);
  443.  
  444.    This function appears in FANN >= 2.1.0
  445. */
  446. FANN_EXTERNAL unsigned int FANN_API fann_get_num_layers(struct fann *ann);
  447.  
  448. /*Function: fann_get_layer_array
  449.  
  450.     Get the number of neurons in each layer in the network.
  451.  
  452.     Bias is not included so the layers match the fann_create functions.
  453.  
  454.     Parameters:
  455.         ann - A previously created neural network structure of
  456.             type <struct fann> pointer.
  457.  
  458.     The layers array must be preallocated to at least
  459.     sizeof(unsigned int) * fann_num_layers() long.
  460.  
  461.    This function appears in FANN >= 2.1.0
  462. */
  463. FANN_EXTERNAL void FANN_API fann_get_layer_array(struct fann *ann, unsigned int *layers);
  464.  
  465. /* Function: fann_get_bias_array
  466.  
  467.     Get the number of bias in each layer in the network.
  468.  
  469.     Parameters:
  470.         ann - A previously created neural network structure of
  471.             type <struct fann> pointer.
  472.  
  473.     The bias array must be preallocated to at least
  474.     sizeof(unsigned int) * fann_num_layers() long.
  475.  
  476.    This function appears in FANN >= 2.1.0
  477. */
  478. FANN_EXTERNAL void FANN_API fann_get_bias_array(struct fann *ann, unsigned int *bias);
  479.  
  480. /* Function: fann_get_connection_array
  481.  
  482.     Get the connections in the network.
  483.  
  484.     Parameters:
  485.         ann - A previously created neural network structure of
  486.             type <struct fann> pointer.
  487.  
  488.     The connections array must be preallocated to at least
  489.     sizeof(struct fann_connection) * fann_get_total_connections() long.
  490.  
  491.    This function appears in FANN >= 2.1.0
  492. */
  493. FANN_EXTERNAL void FANN_API fann_get_connection_array(struct fann *ann,
  494.     struct fann_connection *connections);
  495.  
  496. /* Function: fann_set_weight_array
  497.  
  498.     Set connections in the network.
  499.  
  500.     Parameters:
  501.         ann - A previously created neural network structure of
  502.             type <struct fann> pointer.
  503.  
  504.     Only the weights can be changed, connections and weights are ignored
  505.     if they do not already exist in the network.
  506.  
  507.     The array must have sizeof(struct fann_connection) * num_connections size.
  508.  
  509.    This function appears in FANN >= 2.1.0
  510. */
  511. FANN_EXTERNAL void FANN_API fann_set_weight_array(struct fann *ann,
  512.     struct fann_connection *connections, unsigned int num_connections);
  513.  
  514. /* Function: fann_set_weight
  515.  
  516.     Set a connection in the network.
  517.  
  518.     Parameters:
  519.         ann - A previously created neural network structure of
  520.             type <struct fann> pointer.
  521.  
  522.     Only the weights can be changed. The connection/weight is
  523.     ignored if it does not already exist in the network.
  524.  
  525.    This function appears in FANN >= 2.1.0
  526. */
  527. FANN_EXTERNAL void FANN_API fann_set_weight(struct fann *ann,
  528.     unsigned int from_neuron, unsigned int to_neuron, fann_type weight);
  529.  
  530. /* Function: fann_set_user_data
  531.  
  532.     Store a pointer to user defined data. The pointer can be
  533.     retrieved with <fann_get_user_data> for example in a
  534.     callback. It is the user's responsibility to allocate and
  535.     deallocate any data that the pointer might point to.
  536.  
  537.     Parameters:
  538.         ann - A previously created neural network structure of
  539.             type <struct fann> pointer.
  540.         user_data - A void pointer to user defined data.
  541.  
  542.    This function appears in FANN >= 2.1.0
  543. */
  544. FANN_EXTERNAL void FANN_API fann_set_user_data(struct fann *ann, void *user_data);
  545.  
  546. /* Function: fann_get_user_data
  547.  
  548.     Get a pointer to user defined data that was previously set
  549.     with <fann_set_user_data>. It is the user's responsibility to
  550.     allocate and deallocate any data that the pointer might point to.
  551.  
  552.     Parameters:
  553.         ann - A previously created neural network structure of
  554.             type <struct fann> pointer.
  555.  
  556.     Returns:
  557.         A void pointer to user defined data.
  558.  
  559.    This function appears in FANN >= 2.1.0
  560. */
  561. FANN_EXTERNAL void * FANN_API fann_get_user_data(struct fann *ann);
  562.  
  563. #ifdef FIXEDFANN
  564.    
  565. /* Function: fann_get_decimal_point
  566.  
  567.     Returns the position of the decimal point in the ann.
  568.  
  569.     This function is only available when the ANN is in fixed point mode.
  570.  
  571.     The decimal point is described in greater detail in the tutorial <Fixed Point Usage>.
  572.  
  573.     See also:
  574.         <Fixed Point Usage>, <fann_get_multiplier>, <fann_save_to_fixed>, <fann_save_train_to_fixed>
  575.  
  576.     This function appears in FANN >= 1.0.0.
  577. */
  578. FANN_EXTERNAL unsigned int FANN_API fann_get_decimal_point(struct fann *ann);
  579.  
  580.  
  581. /* Function: fann_get_multiplier
  582.  
  583.     returns the multiplier that fix point data is multiplied with.
  584.  
  585.     This function is only available when the ANN is in fixed point mode.
  586.  
  587.     The multiplier is the used to convert between floating point and fixed point notation.
  588.     A floating point number is multiplied with the multiplier in order to get the fixed point
  589.     number and visa versa.
  590.  
  591.     The multiplier is described in greater detail in the tutorial <Fixed Point Usage>.
  592.  
  593.     See also:
  594.         <Fixed Point Usage>, <fann_get_decimal_point>, <fann_save_to_fixed>, <fann_save_train_to_fixed>
  595.  
  596.     This function appears in FANN >= 1.0.0.
  597. */
  598. FANN_EXTERNAL unsigned int FANN_API fann_get_multiplier(struct fann *ann);
  599.  
  600. #endif  /* FIXEDFANN */
  601.  
  602. #ifdef __cplusplus
  603. #ifndef __cplusplus
  604. /* to fool automatic indention engines */
  605. {
  606.    
  607. #endif
  608. }
  609. #endif  /* __cplusplus */
  610.    
  611. #endif  /* __fann_h__ */
  612.    
  613. #endif /* NOT FANN_INCLUDE */
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement