Advertisement
Guest User

Untitled

a guest
Dec 6th, 2016
69
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 6.42 KB | None | 0 0
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": 1,
  6. "metadata": {
  7. "collapsed": true
  8. },
  9. "outputs": [],
  10. "source": [
  11. "from numpy import *"
  12. ]
  13. },
  14. {
  15. "cell_type": "markdown",
  16. "metadata": {},
  17. "source": [
  18. "# Problema 1"
  19. ]
  20. },
  21. {
  22. "cell_type": "markdown",
  23. "metadata": {},
  24. "source": [
  25. "Si se analizaron 200 láminas y se econtraron en total 460 defectos, entonces el número promedio de defectos por lámina es\n",
  26. "\\begin{equation}\n",
  27. "\\mu \\approx \\frac{460}{200}=2.3\n",
  28. "\\end{equation}\n",
  29. "Entonces, suponiendo que la distribución de defectos en cada lámina sigue una distribución de Poisson \n",
  30. "\n",
  31. "\\begin{equation}\n",
  32. "P(x,\\mu)=\\frac{e^{-\\mu}\\mu^x}{x!}, \\qquad x=0,1,2,3,\\cdots,\n",
  33. "\\end{equation}\n",
  34. "entonces la probabilidad pedida es:\n",
  35. "\n",
  36. "\\begin{align}\n",
  37. "\\text{Probabilidad} &= {P}{\\left({X}\\ge{3}\\right)} \\\\\n",
  38. " &= 1-\\left(P(0,\\mu)+P(1,\\mu)+P(2,\\mu)\\right) \\\\\n",
  39. " &= 1-\\left(\\frac{e^{-2.3}{2.3}^0}{0!}+\\frac{e^{-2.3}{2.3}^1}{1!}\n",
  40. " +\\frac{e^{-2.3}{2.3}^2}{2!}\\right)\\\\\n",
  41. " &= 0.40396\n",
  42. "\\end{align}\n",
  43. "Entonces, evaluamos"
  44. ]
  45. },
  46. {
  47. "cell_type": "code",
  48. "execution_count": 2,
  49. "metadata": {
  50. "collapsed": false
  51. },
  52. "outputs": [
  53. {
  54. "data": {
  55. "text/plain": [
  56. "0.10025884372280376"
  57. ]
  58. },
  59. "execution_count": 2,
  60. "metadata": {},
  61. "output_type": "execute_result"
  62. }
  63. ],
  64. "source": [
  65. "P0 = e**(-2.3)*(2.3)**0/1.\n",
  66. "P0"
  67. ]
  68. },
  69. {
  70. "cell_type": "code",
  71. "execution_count": 3,
  72. "metadata": {
  73. "collapsed": false
  74. },
  75. "outputs": [
  76. {
  77. "data": {
  78. "text/plain": [
  79. "0.23059534056244863"
  80. ]
  81. },
  82. "execution_count": 3,
  83. "metadata": {},
  84. "output_type": "execute_result"
  85. }
  86. ],
  87. "source": [
  88. "P1 = e**(-2.3)*(2.3)**1/1.\n",
  89. "P1"
  90. ]
  91. },
  92. {
  93. "cell_type": "code",
  94. "execution_count": 4,
  95. "metadata": {
  96. "collapsed": false
  97. },
  98. "outputs": [
  99. {
  100. "data": {
  101. "text/plain": [
  102. "0.26518464164681593"
  103. ]
  104. },
  105. "execution_count": 4,
  106. "metadata": {},
  107. "output_type": "execute_result"
  108. }
  109. ],
  110. "source": [
  111. "P2 = e**(-2.3)*(2.3)**2/2.\n",
  112. "P2"
  113. ]
  114. },
  115. {
  116. "cell_type": "code",
  117. "execution_count": 5,
  118. "metadata": {
  119. "collapsed": false
  120. },
  121. "outputs": [
  122. {
  123. "data": {
  124. "text/plain": [
  125. "0.4039611740679317"
  126. ]
  127. },
  128. "execution_count": 5,
  129. "metadata": {},
  130. "output_type": "execute_result"
  131. }
  132. ],
  133. "source": [
  134. "P = 1-P0-P1-P2\n",
  135. "P"
  136. ]
  137. },
  138. {
  139. "cell_type": "markdown",
  140. "metadata": {},
  141. "source": [
  142. "Por lo tanto, la probabilidad es aproximadamente del 40.4%"
  143. ]
  144. },
  145. {
  146. "cell_type": "markdown",
  147. "metadata": {},
  148. "source": [
  149. "# Problema 2"
  150. ]
  151. },
  152. {
  153. "cell_type": "markdown",
  154. "metadata": {},
  155. "source": [
  156. "Suponiendo una distribución gaussiana para los valores posibles de la masa, tenemos entonces que el valor medio de la distribución es\n",
  157. "\n",
  158. "$$\n",
  159. "\\mu = 125.3\\ GeV.\n",
  160. "$$"
  161. ]
  162. },
  163. {
  164. "cell_type": "markdown",
  165. "metadata": {},
  166. "source": [
  167. "## Parte a)\n",
  168. "\n",
  169. "La variabilidad reportada corresponda a $5\\sigma$, es decir,\n",
  170. "\n",
  171. "$$\n",
  172. "5\\sigma = 0.4\\ GeV \\qquad \\sigma = (0.4\\ GeV)/5 = 0.08\\ GeV.\n",
  173. "$$"
  174. ]
  175. },
  176. {
  177. "cell_type": "markdown",
  178. "metadata": {},
  179. "source": [
  180. "## Parte b)\n",
  181. "\n",
  182. "De acuerdo a la tabla, la probabilidad asociada a una variabilidad de $5\\sigma$, es decir, $n=5$, es\n",
  183. "\n",
  184. "$$\n",
  185. "P(\\mu-5\\sigma< x <\\mu+5\\sigma) = 0.999999426697\n",
  186. "$$\n",
  187. "\n",
  188. "Por consiguiente, la probabilidad que el valor la masa *no* esté en ese intervalo es de"
  189. ]
  190. },
  191. {
  192. "cell_type": "code",
  193. "execution_count": 6,
  194. "metadata": {
  195. "collapsed": false
  196. },
  197. "outputs": [
  198. {
  199. "data": {
  200. "text/plain": [
  201. "5.733029999621664e-07"
  202. ]
  203. },
  204. "execution_count": 6,
  205. "metadata": {},
  206. "output_type": "execute_result"
  207. }
  208. ],
  209. "source": [
  210. "1-0.999999426697"
  211. ]
  212. },
  213. {
  214. "cell_type": "markdown",
  215. "metadata": {},
  216. "source": [
  217. "Es decir, de menos de 1 en un millón!"
  218. ]
  219. },
  220. {
  221. "cell_type": "markdown",
  222. "metadata": {},
  223. "source": [
  224. "## Parte c)\n",
  225. "\n",
  226. "Nuevamente, usando la tabla vemos que el 95% de probabilidad corresponde al caso $n=2$, por lo que entonces el intervalo asociado es\n",
  227. "\\begin{align}\n",
  228. "\\mu\\pm\\sigma &= (125.3\\pm 0.16) GeV\n",
  229. "\\end{align}"
  230. ]
  231. },
  232. {
  233. "cell_type": "markdown",
  234. "metadata": {},
  235. "source": [
  236. "# Problema 3\n",
  237. "\n",
  238. "Calcularemos el caso general de la parte b) puesto que lo pedido en la parte a) es un caso particular."
  239. ]
  240. },
  241. {
  242. "cell_type": "markdown",
  243. "metadata": {},
  244. "source": [
  245. "## Parte b)\n",
  246. "\n",
  247. "Si el modelo a ajustar es una constante, $f(x)=a$, entonces la función $\\chi^2$ definida en el método de mínimos cuadrados ponderados es\n",
  248. "$$\n",
  249. "\\chi^2(a)=\\sum_{i=1}^N\\frac{(y_i-a)^2}{\\sigma_i^2}.\n",
  250. "$$\n",
  251. "Como buscamos el valor de $a$ que minimiza lo anterior, derivamos e igualamos a 0:\n",
  252. "$$\n",
  253. "\\frac{\\partial\\chi^2}{\\partial a} = -2\\sum_{i=1}^N\\frac{(y_i-a)}{\\sigma_i^2} = -2\\left[\\sum_{i=1}^N\\frac{y_i}{\\sigma_i^2}-a\\sum_{i=1}^N\\frac{1}{\\sigma_i^2}\\right].\n",
  254. "$$\n",
  255. "Por lo tanto, despejando $a$ obtenemos\n",
  256. "$$\n",
  257. "a=\\frac{\\sum_{i=1}^N\\frac{y_i}{\\sigma_i^2}}{\\sum_{i=1}^N\\frac{1}{\\sigma_i^2}}.\n",
  258. "$$"
  259. ]
  260. },
  261. {
  262. "cell_type": "markdown",
  263. "metadata": {},
  264. "source": [
  265. "## Parte a)\n",
  266. "\n",
  267. "en el caso particular en que $\\sigma_i$ tiene el mismo valor para cada $i=1,\\cdots,N$ lo anterior se reduce a\n",
  268. "$$\n",
  269. "a=\\frac{\\sum_{i=1}^N y_i}{\\sum_{i=1}^N 1}=\\frac{\\sum_{i=1}^N y_i}{N}=\\bar{y}.\n",
  270. "$$"
  271. ]
  272. }
  273. ],
  274. "metadata": {
  275. "anaconda-cloud": {},
  276. "kernelspec": {
  277. "display_name": "Python [default]",
  278. "language": "python",
  279. "name": "python2"
  280. },
  281. "language_info": {
  282. "codemirror_mode": {
  283. "name": "ipython",
  284. "version": 2
  285. },
  286. "file_extension": ".py",
  287. "mimetype": "text/x-python",
  288. "name": "python",
  289. "nbconvert_exporter": "python",
  290. "pygments_lexer": "ipython2",
  291. "version": "2.7.12"
  292. }
  293. },
  294. "nbformat": 4,
  295. "nbformat_minor": 1
  296. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement