martinbelton

piecewise

Jun 4th, 2014
273
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. Clear[x, y, a, b, c, d, e]
  2.  
  3. s[x_] := N[\!\(
  4. \*SubsuperscriptBox[\(\[Integral]\), \(1\), \(m\)]\(
  5. \*FractionBox[\(1\), \(2 y\)] Sign[Sin[
  6. \*FractionBox[\(\[Pi]\ x\), \(y\)]]] \[DifferentialD]y\)\)]
  7. a = s[50]; b = s[100]; c = s[150]; d = s[200]; e = s[250]; f = s[300];
  8.  
  9. k = 50; v1 = Quiet[(NIntegrate[-(1/2) (Log[x/m] + \!\(
  10. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
  11. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  12. \*FractionBox[\(n\), \(n - 1\)]]\)\)), {x, 0, k}])];
  13. k = 50; v2a = Quiet[(NIntegrate[1/2 (Log[x/m] + \!\(
  14. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
  15. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  16. \*FractionBox[\(n\), \(n - 1\)]]\)\)) - N[1/2 (Log[50/50] + \!\(
  17. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(50\)]\(
  18. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  19. \*FractionBox[\(n\), \(n - 1\)]]\)\))] + a, {x, 0, k}])];
  20. k = 100; v2b = Quiet[(NIntegrate[1/2 (Log[x/m] + \!\(
  21. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
  22. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  23. \*FractionBox[\(n\), \(n - 1\)]]\)\)) - N[1/2 (Log[50/50] + \!\(
  24. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(50\)]\(
  25. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  26. \*FractionBox[\(n\), \(n - 1\)]]\)\))] + a, {x, 0, k}])];
  27.  
  28. y = 150; m = 50;
  29. data = Accumulate[
  30. Total[Take[Flatten[ConstantArray[#, Ceiling[(y)/Length@#]]], y] & /@
  31. Table[Join[ConstantArray[1/row, row],
  32. ConstantArray[0, row]], {row, 1, m}]] - Sum[1/k, {k, 1, m}]/2];
  33. Show[ListPlot[data, Frame -> True],
  34. ListLinePlot[Table[Quiet[NIntegrate[-(1/2) (Log[x/m] + \!\(
  35. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
  36. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  37. \*FractionBox[\(n\), \(n - 1\)]]\)\)), {x, 0, k}]], {k, 0, 50}],
  38. DataRange -> {0, 50}, InterpolationOrder -> 1,
  39. PlotStyle -> {Red, Thick}],
  40. ListLinePlot[Table[Quiet[NIntegrate[1/2 (Log[x/m] + \!\(
  41. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
  42. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  43. \*FractionBox[\(n\), \(n - 1\)]]\)\)) - N[1/2 (Log[50/m] + \!\(
  44. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(50\)]\(
  45. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  46. \*FractionBox[\(n\), \(n - 1\)]]\)\))] + a, {x, 0, k}]], {k, 50,
  47. 100}] + v1 - v2a, DataRange -> {50, 100},
  48. InterpolationOrder -> 1, PlotStyle -> {Red, Thick}],
  49. ListLinePlot[Table[Quiet[NIntegrate[-(1/2) (Log[x/m] + \!\(
  50. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
  51. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  52. \*FractionBox[\(n\), \(n - 1\)]]\)\)) + N[1/2 (Log[100/m] + \!\(
  53. \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(100\)]\(
  54. \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
  55. \*FractionBox[\(n\), \(n - 1\)]]\)\))] + b, {x, 0, k}]], {k, 100,
  56. 150}] + 2 v1 + 2 v2b - b, DataRange -> {100, 150},
  57. InterpolationOrder -> 1, PlotStyle -> {Red, Thick}]]
Advertisement
Add Comment
Please, Sign In to add comment