Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Clear[x, y, a, b, c, d, e]
- s[x_] := N[\!\(
- \*SubsuperscriptBox[\(\[Integral]\), \(1\), \(m\)]\(
- \*FractionBox[\(1\), \(2 y\)] Sign[Sin[
- \*FractionBox[\(\[Pi]\ x\), \(y\)]]] \[DifferentialD]y\)\)]
- a = s[50]; b = s[100]; c = s[150]; d = s[200]; e = s[250]; f = s[300];
- k = 50; v1 = Quiet[(NIntegrate[-(1/2) (Log[x/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\)), {x, 0, k}])];
- k = 50; v2a = Quiet[(NIntegrate[1/2 (Log[x/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\)) - N[1/2 (Log[50/50] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(50\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\))] + a, {x, 0, k}])];
- k = 100; v2b = Quiet[(NIntegrate[1/2 (Log[x/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\)) - N[1/2 (Log[50/50] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(50\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\))] + a, {x, 0, k}])];
- y = 150; m = 50;
- data = Accumulate[
- Total[Take[Flatten[ConstantArray[#, Ceiling[(y)/Length@#]]], y] & /@
- Table[Join[ConstantArray[1/row, row],
- ConstantArray[0, row]], {row, 1, m}]] - Sum[1/k, {k, 1, m}]/2];
- Show[ListPlot[data, Frame -> True],
- ListLinePlot[Table[Quiet[NIntegrate[-(1/2) (Log[x/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\)), {x, 0, k}]], {k, 0, 50}],
- DataRange -> {0, 50}, InterpolationOrder -> 1,
- PlotStyle -> {Red, Thick}],
- ListLinePlot[Table[Quiet[NIntegrate[1/2 (Log[x/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\)) - N[1/2 (Log[50/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(50\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\))] + a, {x, 0, k}]], {k, 50,
- 100}] + v1 - v2a, DataRange -> {50, 100},
- InterpolationOrder -> 1, PlotStyle -> {Red, Thick}],
- ListLinePlot[Table[Quiet[NIntegrate[-(1/2) (Log[x/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(x\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\)) + N[1/2 (Log[100/m] + \!\(
- \*SubsuperscriptBox[\(\[Sum]\), \(n = 2\), \(100\)]\(
- \*SuperscriptBox[\((\(-1\))\), \(n\)] Log[
- \*FractionBox[\(n\), \(n - 1\)]]\)\))] + b, {x, 0, k}]], {k, 100,
- 150}] + 2 v1 + 2 v2b - b, DataRange -> {100, 150},
- InterpolationOrder -> 1, PlotStyle -> {Red, Thick}]]
Advertisement
Add Comment
Please, Sign In to add comment