Advertisement
Guest User

Untitled

a guest
Dec 31st, 2016
139
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 67.05 KB | None | 0 0
  1. ninja@ninja:~/caffe$ ./build/tools/caffe train --solver=models/bvlc_alexnet/solvermnist.prototxt
  2. I1231 09:58:24.341311 3750 caffe.cpp:217] Using GPUs 0
  3. I1231 09:58:24.407222 3750 caffe.cpp:222] GPU 0: GeForce GTX 1070
  4. I1231 09:58:24.956543 3750 solver.cpp:48] Initializing solver from parameters:
  5. test_iter: 1000
  6. test_interval: 1000
  7. base_lr: 0.01
  8. display: 20
  9. max_iter: 2000
  10. lr_policy: "step"
  11. gamma: 0.1
  12. momentum: 0.9
  13. weight_decay: 0.0005
  14. stepsize: 1000
  15. snapshot: 1000
  16. snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train"
  17. solver_mode: GPU
  18. device_id: 0
  19. net: "models/bvlc_alexnet/train_valmnist.prototxt"
  20. train_state {
  21. level: 0
  22. stage: ""
  23. }
  24. I1231 09:58:24.956770 3750 solver.cpp:91] Creating training net from net file: models/bvlc_alexnet/train_valmnist.prototxt
  25. I1231 09:58:24.957945 3750 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
  26. I1231 09:58:24.957989 3750 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
  27. I1231 09:58:24.958338 3750 net.cpp:58] Initializing net from parameters:
  28. name: "AlexNet"
  29. state {
  30. phase: TRAIN
  31. level: 0
  32. stage: ""
  33. }
  34. layer {
  35. name: "data"
  36. type: "Data"
  37. top: "data"
  38. top: "label"
  39. include {
  40. phase: TRAIN
  41. }
  42. transform_param {
  43. scale: 0.00390625
  44. }
  45. data_param {
  46. source: "examples/mnist/mnist_train_lmdb"
  47. batch_size: 64
  48. backend: LMDB
  49. }
  50. }
  51. layer {
  52. name: "conv1"
  53. type: "Convolution"
  54. bottom: "data"
  55. top: "conv1"
  56. param {
  57. lr_mult: 1
  58. decay_mult: 1
  59. }
  60. param {
  61. lr_mult: 2
  62. decay_mult: 0
  63. }
  64. convolution_param {
  65. num_output: 96
  66. kernel_size: 3
  67. stride: 1
  68. weight_filler {
  69. type: "gaussian"
  70. std: 0.01
  71. }
  72. bias_filler {
  73. type: "constant"
  74. value: 0
  75. }
  76. }
  77. }
  78. layer {
  79. name: "relu1"
  80. type: "ReLU"
  81. bottom: "conv1"
  82. top: "conv1"
  83. }
  84. layer {
  85. name: "norm1"
  86. type: "LRN"
  87. bottom: "conv1"
  88. top: "norm1"
  89. lrn_param {
  90. local_size: 5
  91. alpha: 0.0001
  92. beta: 0.75
  93. }
  94. }
  95. layer {
  96. name: "pool1"
  97. type: "Pooling"
  98. bottom: "norm1"
  99. top: "pool1"
  100. pooling_param {
  101. pool: MAX
  102. kernel_size: 3
  103. stride: 1
  104. }
  105. }
  106. layer {
  107. name: "conv2"
  108. type: "Convolution"
  109. bottom: "pool1"
  110. top: "conv2"
  111. param {
  112. lr_mult: 1
  113. decay_mult: 1
  114. }
  115. param {
  116. lr_mult: 2
  117. decay_mult: 0
  118. }
  119. convolution_param {
  120. num_output: 256
  121. pad: 2
  122. kernel_size: 3
  123. group: 2
  124. weight_filler {
  125. type: "gaussian"
  126. std: 0.01
  127. }
  128. bias_filler {
  129. type: "constant"
  130. value: 0.1
  131. }
  132. }
  133. }
  134. layer {
  135. name: "relu2"
  136. type: "ReLU"
  137. bottom: "conv2"
  138. top: "conv2"
  139. }
  140. layer {
  141. name: "norm2"
  142. type: "LRN"
  143. bottom: "conv2"
  144. top: "norm2"
  145. lrn_param {
  146. local_size: 5
  147. alpha: 0.0001
  148. beta: 0.75
  149. }
  150. }
  151. layer {
  152. name: "pool2"
  153. type: "Pooling"
  154. bottom: "norm2"
  155. top: "pool2"
  156. pooling_param {
  157. pool: MAX
  158. kernel_size: 3
  159. stride: 2
  160. }
  161. }
  162. layer {
  163. name: "conv3"
  164. type: "Convolution"
  165. bottom: "pool2"
  166. top: "conv3"
  167. param {
  168. lr_mult: 1
  169. decay_mult: 1
  170. }
  171. param {
  172. lr_mult: 2
  173. decay_mult: 0
  174. }
  175. convolution_param {
  176. num_output: 384
  177. pad: 1
  178. kernel_size: 3
  179. weight_filler {
  180. type: "gaussian"
  181. std: 0.01
  182. }
  183. bias_filler {
  184. type: "constant"
  185. value: 0
  186. }
  187. }
  188. }
  189. layer {
  190. name: "relu3"
  191. type: "ReLU"
  192. bottom: "conv3"
  193. top: "conv3"
  194. }
  195. layer {
  196. name: "conv4"
  197. type: "Convolution"
  198. bottom: "conv3"
  199. top: "conv4"
  200. param {
  201. lr_mult: 1
  202. decay_mult: 1
  203. }
  204. param {
  205. lr_mult: 2
  206. decay_mult: 0
  207. }
  208. convolution_param {
  209. num_output: 384
  210. pad: 1
  211. kernel_size: 3
  212. group: 2
  213. weight_filler {
  214. type: "gaussian"
  215. std: 0.01
  216. }
  217. bias_filler {
  218. type: "constant"
  219. value: 0.1
  220. }
  221. }
  222. }
  223. layer {
  224. name: "relu4"
  225. type: "ReLU"
  226. bottom: "conv4"
  227. top: "conv4"
  228. }
  229. layer {
  230. name: "conv5"
  231. type: "Convolution"
  232. bottom: "conv4"
  233. top: "conv5"
  234. param {
  235. lr_mult: 1
  236. decay_mult: 1
  237. }
  238. param {
  239. lr_mult: 2
  240. decay_mult: 0
  241. }
  242. convolution_param {
  243. num_output: 256
  244. pad: 1
  245. kernel_size: 3
  246. group: 2
  247. weight_filler {
  248. type: "gaussian"
  249. std: 0.01
  250. }
  251. bias_filler {
  252. type: "constant"
  253. value: 0.1
  254. }
  255. }
  256. }
  257. layer {
  258. name: "relu5"
  259. type: "ReLU"
  260. bottom: "conv5"
  261. top: "conv5"
  262. }
  263. layer {
  264. name: "pool5"
  265. type: "Pooling"
  266. bottom: "conv5"
  267. top: "pool5"
  268. pooling_param {
  269. pool: MAX
  270. kernel_size: 3
  271. stride: 2
  272. }
  273. }
  274. layer {
  275. name: "fc6"
  276. type: "InnerProduct"
  277. bottom: "pool5"
  278. top: "fc6"
  279. param {
  280. lr_mult: 1
  281. decay_mult: 1
  282. }
  283. param {
  284. lr_mult: 2
  285. decay_mult: 0
  286. }
  287. inner_product_param {
  288. num_output: 4096
  289. weight_filler {
  290. type: "gaussian"
  291. std: 0.005
  292. }
  293. bias_filler {
  294. type: "constant"
  295. value: 0.1
  296. }
  297. }
  298. }
  299. layer {
  300. name: "relu6"
  301. type: "ReLU"
  302. bottom: "fc6"
  303. top: "fc6"
  304. }
  305. layer {
  306. name: "drop6"
  307. type: "Dropout"
  308. bottom: "fc6"
  309. top: "fc6"
  310. dropout_param {
  311. dropout_ratio: 0.5
  312. }
  313. }
  314. layer {
  315. name: "fc7"
  316. type: "InnerProduct"
  317. bottom: "fc6"
  318. top: "fc7"
  319. param {
  320. lr_mult: 1
  321. decay_mult: 1
  322. }
  323. param {
  324. lr_mult: 2
  325. decay_mult: 0
  326. }
  327. inner_product_param {
  328. num_output: 4096
  329. weight_filler {
  330. type: "gaussian"
  331. std: 0.005
  332. }
  333. bias_filler {
  334. type: "constant"
  335. value: 0.1
  336. }
  337. }
  338. }
  339. layer {
  340. name: "relu7"
  341. type: "ReLU"
  342. bottom: "fc7"
  343. top: "fc7"
  344. }
  345. layer {
  346. name: "drop7"
  347. type: "Dropout"
  348. bottom: "fc7"
  349. top: "fc7"
  350. dropout_param {
  351. dropout_ratio: 0.5
  352. }
  353. }
  354. layer {
  355. name: "fc8"
  356. type: "InnerProduct"
  357. bottom: "fc7"
  358. top: "fc8"
  359. param {
  360. lr_mult: 1
  361. decay_mult: 1
  362. }
  363. param {
  364. lr_mult: 2
  365. decay_mult: 0
  366. }
  367. inner_product_param {
  368. num_output: 1000
  369. weight_filler {
  370. type: "gaussian"
  371. std: 0.01
  372. }
  373. bias_filler {
  374. type: "constant"
  375. value: 0
  376. }
  377. }
  378. }
  379. layer {
  380. name: "loss"
  381. type: "SoftmaxWithLoss"
  382. bottom: "fc8"
  383. bottom: "label"
  384. top: "loss"
  385. }
  386. I1231 09:58:24.958807 3750 layer_factory.hpp:77] Creating layer data
  387. I1231 09:58:24.960191 3750 net.cpp:100] Creating Layer data
  388. I1231 09:58:24.960222 3750 net.cpp:408] data -> data
  389. I1231 09:58:24.960258 3750 net.cpp:408] data -> label
  390. I1231 09:58:24.962350 3759 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_train_lmdb
  391. I1231 09:58:25.051169 3750 data_layer.cpp:41] output data size: 64,1,28,28
  392. I1231 09:58:25.053405 3750 net.cpp:150] Setting up data
  393. I1231 09:58:25.053428 3750 net.cpp:157] Top shape: 64 1 28 28 (50176)
  394. I1231 09:58:25.053438 3750 net.cpp:157] Top shape: 64 (64)
  395. I1231 09:58:25.053444 3750 net.cpp:165] Memory required for data: 200960
  396. I1231 09:58:25.053458 3750 layer_factory.hpp:77] Creating layer conv1
  397. I1231 09:58:25.053489 3750 net.cpp:100] Creating Layer conv1
  398. I1231 09:58:25.053498 3750 net.cpp:434] conv1 <- data
  399. I1231 09:58:25.053514 3750 net.cpp:408] conv1 -> conv1
  400. I1231 09:58:25.055207 3750 net.cpp:150] Setting up conv1
  401. I1231 09:58:25.055236 3750 net.cpp:157] Top shape: 64 96 26 26 (4153344)
  402. I1231 09:58:25.055241 3750 net.cpp:165] Memory required for data: 16814336
  403. I1231 09:58:25.055268 3750 layer_factory.hpp:77] Creating layer relu1
  404. I1231 09:58:25.055281 3750 net.cpp:100] Creating Layer relu1
  405. I1231 09:58:25.055289 3750 net.cpp:434] relu1 <- conv1
  406. I1231 09:58:25.055299 3750 net.cpp:395] relu1 -> conv1 (in-place)
  407. I1231 09:58:25.055310 3750 net.cpp:150] Setting up relu1
  408. I1231 09:58:25.055318 3750 net.cpp:157] Top shape: 64 96 26 26 (4153344)
  409. I1231 09:58:25.055326 3750 net.cpp:165] Memory required for data: 33427712
  410. I1231 09:58:25.055335 3750 layer_factory.hpp:77] Creating layer norm1
  411. I1231 09:58:25.055346 3750 net.cpp:100] Creating Layer norm1
  412. I1231 09:58:25.055352 3750 net.cpp:434] norm1 <- conv1
  413. I1231 09:58:25.055362 3750 net.cpp:408] norm1 -> norm1
  414. I1231 09:58:25.055415 3750 net.cpp:150] Setting up norm1
  415. I1231 09:58:25.055424 3750 net.cpp:157] Top shape: 64 96 26 26 (4153344)
  416. I1231 09:58:25.055430 3750 net.cpp:165] Memory required for data: 50041088
  417. I1231 09:58:25.055438 3750 layer_factory.hpp:77] Creating layer pool1
  418. I1231 09:58:25.055449 3750 net.cpp:100] Creating Layer pool1
  419. I1231 09:58:25.055454 3750 net.cpp:434] pool1 <- norm1
  420. I1231 09:58:25.055462 3750 net.cpp:408] pool1 -> pool1
  421. I1231 09:58:25.055522 3750 net.cpp:150] Setting up pool1
  422. I1231 09:58:25.055533 3750 net.cpp:157] Top shape: 64 96 24 24 (3538944)
  423. I1231 09:58:25.055563 3750 net.cpp:165] Memory required for data: 64196864
  424. I1231 09:58:25.055572 3750 layer_factory.hpp:77] Creating layer conv2
  425. I1231 09:58:25.055588 3750 net.cpp:100] Creating Layer conv2
  426. I1231 09:58:25.055593 3750 net.cpp:434] conv2 <- pool1
  427. I1231 09:58:25.055603 3750 net.cpp:408] conv2 -> conv2
  428. I1231 09:58:25.059763 3750 net.cpp:150] Setting up conv2
  429. I1231 09:58:25.059779 3750 net.cpp:157] Top shape: 64 256 26 26 (11075584)
  430. I1231 09:58:25.059784 3750 net.cpp:165] Memory required for data: 108499200
  431. I1231 09:58:25.059795 3750 layer_factory.hpp:77] Creating layer relu2
  432. I1231 09:58:25.059803 3750 net.cpp:100] Creating Layer relu2
  433. I1231 09:58:25.059809 3750 net.cpp:434] relu2 <- conv2
  434. I1231 09:58:25.059816 3750 net.cpp:395] relu2 -> conv2 (in-place)
  435. I1231 09:58:25.059824 3750 net.cpp:150] Setting up relu2
  436. I1231 09:58:25.059830 3750 net.cpp:157] Top shape: 64 256 26 26 (11075584)
  437. I1231 09:58:25.059835 3750 net.cpp:165] Memory required for data: 152801536
  438. I1231 09:58:25.059840 3750 layer_factory.hpp:77] Creating layer norm2
  439. I1231 09:58:25.059847 3750 net.cpp:100] Creating Layer norm2
  440. I1231 09:58:25.059851 3750 net.cpp:434] norm2 <- conv2
  441. I1231 09:58:25.059859 3750 net.cpp:408] norm2 -> norm2
  442. I1231 09:58:25.059898 3750 net.cpp:150] Setting up norm2
  443. I1231 09:58:25.059906 3750 net.cpp:157] Top shape: 64 256 26 26 (11075584)
  444. I1231 09:58:25.059908 3750 net.cpp:165] Memory required for data: 197103872
  445. I1231 09:58:25.059913 3750 layer_factory.hpp:77] Creating layer pool2
  446. I1231 09:58:25.059919 3750 net.cpp:100] Creating Layer pool2
  447. I1231 09:58:25.059923 3750 net.cpp:434] pool2 <- norm2
  448. I1231 09:58:25.059928 3750 net.cpp:408] pool2 -> pool2
  449. I1231 09:58:25.059962 3750 net.cpp:150] Setting up pool2
  450. I1231 09:58:25.059968 3750 net.cpp:157] Top shape: 64 256 13 13 (2768896)
  451. I1231 09:58:25.059972 3750 net.cpp:165] Memory required for data: 208179456
  452. I1231 09:58:25.059975 3750 layer_factory.hpp:77] Creating layer conv3
  453. I1231 09:58:25.059984 3750 net.cpp:100] Creating Layer conv3
  454. I1231 09:58:25.059988 3750 net.cpp:434] conv3 <- pool2
  455. I1231 09:58:25.059993 3750 net.cpp:408] conv3 -> conv3
  456. I1231 09:58:25.070734 3750 net.cpp:150] Setting up conv3
  457. I1231 09:58:25.070754 3750 net.cpp:157] Top shape: 64 384 13 13 (4153344)
  458. I1231 09:58:25.070755 3750 net.cpp:165] Memory required for data: 224792832
  459. I1231 09:58:25.070765 3750 layer_factory.hpp:77] Creating layer relu3
  460. I1231 09:58:25.070771 3750 net.cpp:100] Creating Layer relu3
  461. I1231 09:58:25.070775 3750 net.cpp:434] relu3 <- conv3
  462. I1231 09:58:25.070780 3750 net.cpp:395] relu3 -> conv3 (in-place)
  463. I1231 09:58:25.070787 3750 net.cpp:150] Setting up relu3
  464. I1231 09:58:25.070792 3750 net.cpp:157] Top shape: 64 384 13 13 (4153344)
  465. I1231 09:58:25.070796 3750 net.cpp:165] Memory required for data: 241406208
  466. I1231 09:58:25.070798 3750 layer_factory.hpp:77] Creating layer conv4
  467. I1231 09:58:25.070806 3750 net.cpp:100] Creating Layer conv4
  468. I1231 09:58:25.070809 3750 net.cpp:434] conv4 <- conv3
  469. I1231 09:58:25.070814 3750 net.cpp:408] conv4 -> conv4
  470. I1231 09:58:25.077191 3750 net.cpp:150] Setting up conv4
  471. I1231 09:58:25.077200 3750 net.cpp:157] Top shape: 64 384 13 13 (4153344)
  472. I1231 09:58:25.077203 3750 net.cpp:165] Memory required for data: 258019584
  473. I1231 09:58:25.077208 3750 layer_factory.hpp:77] Creating layer relu4
  474. I1231 09:58:25.077214 3750 net.cpp:100] Creating Layer relu4
  475. I1231 09:58:25.077215 3750 net.cpp:434] relu4 <- conv4
  476. I1231 09:58:25.077219 3750 net.cpp:395] relu4 -> conv4 (in-place)
  477. I1231 09:58:25.077224 3750 net.cpp:150] Setting up relu4
  478. I1231 09:58:25.077226 3750 net.cpp:157] Top shape: 64 384 13 13 (4153344)
  479. I1231 09:58:25.077229 3750 net.cpp:165] Memory required for data: 274632960
  480. I1231 09:58:25.077232 3750 layer_factory.hpp:77] Creating layer conv5
  481. I1231 09:58:25.077239 3750 net.cpp:100] Creating Layer conv5
  482. I1231 09:58:25.077242 3750 net.cpp:434] conv5 <- conv4
  483. I1231 09:58:25.077247 3750 net.cpp:408] conv5 -> conv5
  484. I1231 09:58:25.081475 3750 net.cpp:150] Setting up conv5
  485. I1231 09:58:25.081492 3750 net.cpp:157] Top shape: 64 256 13 13 (2768896)
  486. I1231 09:58:25.081511 3750 net.cpp:165] Memory required for data: 285708544
  487. I1231 09:58:25.081521 3750 layer_factory.hpp:77] Creating layer relu5
  488. I1231 09:58:25.081526 3750 net.cpp:100] Creating Layer relu5
  489. I1231 09:58:25.081531 3750 net.cpp:434] relu5 <- conv5
  490. I1231 09:58:25.081535 3750 net.cpp:395] relu5 -> conv5 (in-place)
  491. I1231 09:58:25.081542 3750 net.cpp:150] Setting up relu5
  492. I1231 09:58:25.081547 3750 net.cpp:157] Top shape: 64 256 13 13 (2768896)
  493. I1231 09:58:25.081552 3750 net.cpp:165] Memory required for data: 296784128
  494. I1231 09:58:25.081555 3750 layer_factory.hpp:77] Creating layer pool5
  495. I1231 09:58:25.081560 3750 net.cpp:100] Creating Layer pool5
  496. I1231 09:58:25.081564 3750 net.cpp:434] pool5 <- conv5
  497. I1231 09:58:25.081570 3750 net.cpp:408] pool5 -> pool5
  498. I1231 09:58:25.081604 3750 net.cpp:150] Setting up pool5
  499. I1231 09:58:25.081610 3750 net.cpp:157] Top shape: 64 256 6 6 (589824)
  500. I1231 09:58:25.081612 3750 net.cpp:165] Memory required for data: 299143424
  501. I1231 09:58:25.081616 3750 layer_factory.hpp:77] Creating layer fc6
  502. I1231 09:58:25.081622 3750 net.cpp:100] Creating Layer fc6
  503. I1231 09:58:25.081625 3750 net.cpp:434] fc6 <- pool5
  504. I1231 09:58:25.081629 3750 net.cpp:408] fc6 -> fc6
  505. I1231 09:58:25.361205 3750 net.cpp:150] Setting up fc6
  506. I1231 09:58:25.361223 3750 net.cpp:157] Top shape: 64 4096 (262144)
  507. I1231 09:58:25.361225 3750 net.cpp:165] Memory required for data: 300192000
  508. I1231 09:58:25.361232 3750 layer_factory.hpp:77] Creating layer relu6
  509. I1231 09:58:25.361239 3750 net.cpp:100] Creating Layer relu6
  510. I1231 09:58:25.361241 3750 net.cpp:434] relu6 <- fc6
  511. I1231 09:58:25.361245 3750 net.cpp:395] relu6 -> fc6 (in-place)
  512. I1231 09:58:25.361253 3750 net.cpp:150] Setting up relu6
  513. I1231 09:58:25.361256 3750 net.cpp:157] Top shape: 64 4096 (262144)
  514. I1231 09:58:25.361258 3750 net.cpp:165] Memory required for data: 301240576
  515. I1231 09:58:25.361261 3750 layer_factory.hpp:77] Creating layer drop6
  516. I1231 09:58:25.361265 3750 net.cpp:100] Creating Layer drop6
  517. I1231 09:58:25.361268 3750 net.cpp:434] drop6 <- fc6
  518. I1231 09:58:25.361270 3750 net.cpp:395] drop6 -> fc6 (in-place)
  519. I1231 09:58:25.361285 3750 net.cpp:150] Setting up drop6
  520. I1231 09:58:25.361289 3750 net.cpp:157] Top shape: 64 4096 (262144)
  521. I1231 09:58:25.361291 3750 net.cpp:165] Memory required for data: 302289152
  522. I1231 09:58:25.361292 3750 layer_factory.hpp:77] Creating layer fc7
  523. I1231 09:58:25.361296 3750 net.cpp:100] Creating Layer fc7
  524. I1231 09:58:25.361299 3750 net.cpp:434] fc7 <- fc6
  525. I1231 09:58:25.361302 3750 net.cpp:408] fc7 -> fc7
  526. I1231 09:58:25.485281 3750 net.cpp:150] Setting up fc7
  527. I1231 09:58:25.485301 3750 net.cpp:157] Top shape: 64 4096 (262144)
  528. I1231 09:58:25.485302 3750 net.cpp:165] Memory required for data: 303337728
  529. I1231 09:58:25.485311 3750 layer_factory.hpp:77] Creating layer relu7
  530. I1231 09:58:25.485316 3750 net.cpp:100] Creating Layer relu7
  531. I1231 09:58:25.485318 3750 net.cpp:434] relu7 <- fc7
  532. I1231 09:58:25.485323 3750 net.cpp:395] relu7 -> fc7 (in-place)
  533. I1231 09:58:25.485330 3750 net.cpp:150] Setting up relu7
  534. I1231 09:58:25.485333 3750 net.cpp:157] Top shape: 64 4096 (262144)
  535. I1231 09:58:25.485334 3750 net.cpp:165] Memory required for data: 304386304
  536. I1231 09:58:25.485337 3750 layer_factory.hpp:77] Creating layer drop7
  537. I1231 09:58:25.485340 3750 net.cpp:100] Creating Layer drop7
  538. I1231 09:58:25.485342 3750 net.cpp:434] drop7 <- fc7
  539. I1231 09:58:25.485344 3750 net.cpp:395] drop7 -> fc7 (in-place)
  540. I1231 09:58:25.485357 3750 net.cpp:150] Setting up drop7
  541. I1231 09:58:25.485361 3750 net.cpp:157] Top shape: 64 4096 (262144)
  542. I1231 09:58:25.485363 3750 net.cpp:165] Memory required for data: 305434880
  543. I1231 09:58:25.485364 3750 layer_factory.hpp:77] Creating layer fc8
  544. I1231 09:58:25.485368 3750 net.cpp:100] Creating Layer fc8
  545. I1231 09:58:25.485370 3750 net.cpp:434] fc8 <- fc7
  546. I1231 09:58:25.485374 3750 net.cpp:408] fc8 -> fc8
  547. I1231 09:58:25.516559 3750 net.cpp:150] Setting up fc8
  548. I1231 09:58:25.516577 3750 net.cpp:157] Top shape: 64 1000 (64000)
  549. I1231 09:58:25.516598 3750 net.cpp:165] Memory required for data: 305690880
  550. I1231 09:58:25.516607 3750 layer_factory.hpp:77] Creating layer loss
  551. I1231 09:58:25.516614 3750 net.cpp:100] Creating Layer loss
  552. I1231 09:58:25.516618 3750 net.cpp:434] loss <- fc8
  553. I1231 09:58:25.516623 3750 net.cpp:434] loss <- label
  554. I1231 09:58:25.516628 3750 net.cpp:408] loss -> loss
  555. I1231 09:58:25.516643 3750 layer_factory.hpp:77] Creating layer loss
  556. I1231 09:58:25.516732 3750 net.cpp:150] Setting up loss
  557. I1231 09:58:25.516736 3750 net.cpp:157] Top shape: (1)
  558. I1231 09:58:25.516738 3750 net.cpp:160] with loss weight 1
  559. I1231 09:58:25.516757 3750 net.cpp:165] Memory required for data: 305690884
  560. I1231 09:58:25.516759 3750 net.cpp:226] loss needs backward computation.
  561. I1231 09:58:25.516765 3750 net.cpp:226] fc8 needs backward computation.
  562. I1231 09:58:25.516768 3750 net.cpp:226] drop7 needs backward computation.
  563. I1231 09:58:25.516770 3750 net.cpp:226] relu7 needs backward computation.
  564. I1231 09:58:25.516772 3750 net.cpp:226] fc7 needs backward computation.
  565. I1231 09:58:25.516775 3750 net.cpp:226] drop6 needs backward computation.
  566. I1231 09:58:25.516778 3750 net.cpp:226] relu6 needs backward computation.
  567. I1231 09:58:25.516782 3750 net.cpp:226] fc6 needs backward computation.
  568. I1231 09:58:25.516784 3750 net.cpp:226] pool5 needs backward computation.
  569. I1231 09:58:25.516788 3750 net.cpp:226] relu5 needs backward computation.
  570. I1231 09:58:25.516790 3750 net.cpp:226] conv5 needs backward computation.
  571. I1231 09:58:25.516793 3750 net.cpp:226] relu4 needs backward computation.
  572. I1231 09:58:25.516795 3750 net.cpp:226] conv4 needs backward computation.
  573. I1231 09:58:25.516798 3750 net.cpp:226] relu3 needs backward computation.
  574. I1231 09:58:25.516801 3750 net.cpp:226] conv3 needs backward computation.
  575. I1231 09:58:25.516804 3750 net.cpp:226] pool2 needs backward computation.
  576. I1231 09:58:25.516806 3750 net.cpp:226] norm2 needs backward computation.
  577. I1231 09:58:25.516809 3750 net.cpp:226] relu2 needs backward computation.
  578. I1231 09:58:25.516813 3750 net.cpp:226] conv2 needs backward computation.
  579. I1231 09:58:25.516814 3750 net.cpp:226] pool1 needs backward computation.
  580. I1231 09:58:25.516816 3750 net.cpp:226] norm1 needs backward computation.
  581. I1231 09:58:25.516819 3750 net.cpp:226] relu1 needs backward computation.
  582. I1231 09:58:25.516822 3750 net.cpp:226] conv1 needs backward computation.
  583. I1231 09:58:25.516825 3750 net.cpp:228] data does not need backward computation.
  584. I1231 09:58:25.516827 3750 net.cpp:270] This network produces output loss
  585. I1231 09:58:25.516837 3750 net.cpp:283] Network initialization done.
  586. I1231 09:58:25.517024 3750 solver.cpp:181] Creating test net (#0) specified by net file: models/bvlc_alexnet/train_valmnist.prototxt
  587. I1231 09:58:25.517045 3750 net.cpp:322] The NetState phase (1) differed from the phase (0) specified by a rule in layer data
  588. I1231 09:58:25.517154 3750 net.cpp:58] Initializing net from parameters:
  589. name: "AlexNet"
  590. state {
  591. phase: TEST
  592. }
  593. layer {
  594. name: "data"
  595. type: "Data"
  596. top: "data"
  597. top: "label"
  598. include {
  599. phase: TEST
  600. }
  601. transform_param {
  602. scale: 0.00390625
  603. }
  604. data_param {
  605. source: "examples/mnist/mnist_test_lmdb"
  606. batch_size: 100
  607. backend: LMDB
  608. }
  609. }
  610. layer {
  611. name: "conv1"
  612. type: "Convolution"
  613. bottom: "data"
  614. top: "conv1"
  615. param {
  616. lr_mult: 1
  617. decay_mult: 1
  618. }
  619. param {
  620. lr_mult: 2
  621. decay_mult: 0
  622. }
  623. convolution_param {
  624. num_output: 96
  625. kernel_size: 3
  626. stride: 1
  627. weight_filler {
  628. type: "gaussian"
  629. std: 0.01
  630. }
  631. bias_filler {
  632. type: "constant"
  633. value: 0
  634. }
  635. }
  636. }
  637. layer {
  638. name: "relu1"
  639. type: "ReLU"
  640. bottom: "conv1"
  641. top: "conv1"
  642. }
  643. layer {
  644. name: "norm1"
  645. type: "LRN"
  646. bottom: "conv1"
  647. top: "norm1"
  648. lrn_param {
  649. local_size: 5
  650. alpha: 0.0001
  651. beta: 0.75
  652. }
  653. }
  654. layer {
  655. name: "pool1"
  656. type: "Pooling"
  657. bottom: "norm1"
  658. top: "pool1"
  659. pooling_param {
  660. pool: MAX
  661. kernel_size: 3
  662. stride: 1
  663. }
  664. }
  665. layer {
  666. name: "conv2"
  667. type: "Convolution"
  668. bottom: "pool1"
  669. top: "conv2"
  670. param {
  671. lr_mult: 1
  672. decay_mult: 1
  673. }
  674. param {
  675. lr_mult: 2
  676. decay_mult: 0
  677. }
  678. convolution_param {
  679. num_output: 256
  680. pad: 2
  681. kernel_size: 3
  682. group: 2
  683. weight_filler {
  684. type: "gaussian"
  685. std: 0.01
  686. }
  687. bias_filler {
  688. type: "constant"
  689. value: 0.1
  690. }
  691. }
  692. }
  693. layer {
  694. name: "relu2"
  695. type: "ReLU"
  696. bottom: "conv2"
  697. top: "conv2"
  698. }
  699. layer {
  700. name: "norm2"
  701. type: "LRN"
  702. bottom: "conv2"
  703. top: "norm2"
  704. lrn_param {
  705. local_size: 5
  706. alpha: 0.0001
  707. beta: 0.75
  708. }
  709. }
  710. layer {
  711. name: "pool2"
  712. type: "Pooling"
  713. bottom: "norm2"
  714. top: "pool2"
  715. pooling_param {
  716. pool: MAX
  717. kernel_size: 3
  718. stride: 2
  719. }
  720. }
  721. layer {
  722. name: "conv3"
  723. type: "Convolution"
  724. bottom: "pool2"
  725. top: "conv3"
  726. param {
  727. lr_mult: 1
  728. decay_mult: 1
  729. }
  730. param {
  731. lr_mult: 2
  732. decay_mult: 0
  733. }
  734. convolution_param {
  735. num_output: 384
  736. pad: 1
  737. kernel_size: 3
  738. weight_filler {
  739. type: "gaussian"
  740. std: 0.01
  741. }
  742. bias_filler {
  743. type: "constant"
  744. value: 0
  745. }
  746. }
  747. }
  748. layer {
  749. name: "relu3"
  750. type: "ReLU"
  751. bottom: "conv3"
  752. top: "conv3"
  753. }
  754. layer {
  755. name: "conv4"
  756. type: "Convolution"
  757. bottom: "conv3"
  758. top: "conv4"
  759. param {
  760. lr_mult: 1
  761. decay_mult: 1
  762. }
  763. param {
  764. lr_mult: 2
  765. decay_mult: 0
  766. }
  767. convolution_param {
  768. num_output: 384
  769. pad: 1
  770. kernel_size: 3
  771. group: 2
  772. weight_filler {
  773. type: "gaussian"
  774. std: 0.01
  775. }
  776. bias_filler {
  777. type: "constant"
  778. value: 0.1
  779. }
  780. }
  781. }
  782. layer {
  783. name: "relu4"
  784. type: "ReLU"
  785. bottom: "conv4"
  786. top: "conv4"
  787. }
  788. layer {
  789. name: "conv5"
  790. type: "Convolution"
  791. bottom: "conv4"
  792. top: "conv5"
  793. param {
  794. lr_mult: 1
  795. decay_mult: 1
  796. }
  797. param {
  798. lr_mult: 2
  799. decay_mult: 0
  800. }
  801. convolution_param {
  802. num_output: 256
  803. pad: 1
  804. kernel_size: 3
  805. group: 2
  806. weight_filler {
  807. type: "gaussian"
  808. std: 0.01
  809. }
  810. bias_filler {
  811. type: "constant"
  812. value: 0.1
  813. }
  814. }
  815. }
  816. layer {
  817. name: "relu5"
  818. type: "ReLU"
  819. bottom: "conv5"
  820. top: "conv5"
  821. }
  822. layer {
  823. name: "pool5"
  824. type: "Pooling"
  825. bottom: "conv5"
  826. top: "pool5"
  827. pooling_param {
  828. pool: MAX
  829. kernel_size: 3
  830. stride: 2
  831. }
  832. }
  833. layer {
  834. name: "fc6"
  835. type: "InnerProduct"
  836. bottom: "pool5"
  837. top: "fc6"
  838. param {
  839. lr_mult: 1
  840. decay_mult: 1
  841. }
  842. param {
  843. lr_mult: 2
  844. decay_mult: 0
  845. }
  846. inner_product_param {
  847. num_output: 4096
  848. weight_filler {
  849. type: "gaussian"
  850. std: 0.005
  851. }
  852. bias_filler {
  853. type: "constant"
  854. value: 0.1
  855. }
  856. }
  857. }
  858. layer {
  859. name: "relu6"
  860. type: "ReLU"
  861. bottom: "fc6"
  862. top: "fc6"
  863. }
  864. layer {
  865. name: "drop6"
  866. type: "Dropout"
  867. bottom: "fc6"
  868. top: "fc6"
  869. dropout_param {
  870. dropout_ratio: 0.5
  871. }
  872. }
  873. layer {
  874. name: "fc7"
  875. type: "InnerProduct"
  876. bottom: "fc6"
  877. top: "fc7"
  878. param {
  879. lr_mult: 1
  880. decay_mult: 1
  881. }
  882. param {
  883. lr_mult: 2
  884. decay_mult: 0
  885. }
  886. inner_product_param {
  887. num_output: 4096
  888. weight_filler {
  889. type: "gaussian"
  890. std: 0.005
  891. }
  892. bias_filler {
  893. type: "constant"
  894. value: 0.1
  895. }
  896. }
  897. }
  898. layer {
  899. name: "relu7"
  900. type: "ReLU"
  901. bottom: "fc7"
  902. top: "fc7"
  903. }
  904. layer {
  905. name: "drop7"
  906. type: "Dropout"
  907. bottom: "fc7"
  908. top: "fc7"
  909. dropout_param {
  910. dropout_ratio: 0.5
  911. }
  912. }
  913. layer {
  914. name: "fc8"
  915. type: "InnerProduct"
  916. bottom: "fc7"
  917. top: "fc8"
  918. param {
  919. lr_mult: 1
  920. decay_mult: 1
  921. }
  922. param {
  923. lr_mult: 2
  924. decay_mult: 0
  925. }
  926. inner_product_param {
  927. num_output: 1000
  928. weight_filler {
  929. type: "gaussian"
  930. std: 0.01
  931. }
  932. bias_filler {
  933. type: "constant"
  934. value: 0
  935. }
  936. }
  937. }
  938. layer {
  939. name: "accuracy"
  940. type: "Accuracy"
  941. bottom: "fc8"
  942. bottom: "label"
  943. top: "accuracy"
  944. include {
  945. phase: TEST
  946. }
  947. }
  948. layer {
  949. name: "loss"
  950. type: "SoftmaxWithLoss"
  951. bottom: "fc8"
  952. bottom: "label"
  953. top: "loss"
  954. }
  955. I1231 09:58:25.517351 3750 layer_factory.hpp:77] Creating layer data
  956. I1231 09:58:25.517536 3750 net.cpp:100] Creating Layer data
  957. I1231 09:58:25.517542 3750 net.cpp:408] data -> data
  958. I1231 09:58:25.517549 3750 net.cpp:408] data -> label
  959. I1231 09:58:25.529608 3762 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_test_lmdb
  960. I1231 09:58:25.530697 3750 data_layer.cpp:41] output data size: 100,1,28,28
  961. I1231 09:58:25.531313 3750 net.cpp:150] Setting up data
  962. I1231 09:58:25.531321 3750 net.cpp:157] Top shape: 100 1 28 28 (78400)
  963. I1231 09:58:25.531325 3750 net.cpp:157] Top shape: 100 (100)
  964. I1231 09:58:25.531328 3750 net.cpp:165] Memory required for data: 314000
  965. I1231 09:58:25.531332 3750 layer_factory.hpp:77] Creating layer label_data_1_split
  966. I1231 09:58:25.531339 3750 net.cpp:100] Creating Layer label_data_1_split
  967. I1231 09:58:25.531343 3750 net.cpp:434] label_data_1_split <- label
  968. I1231 09:58:25.531348 3750 net.cpp:408] label_data_1_split -> label_data_1_split_0
  969. I1231 09:58:25.531354 3750 net.cpp:408] label_data_1_split -> label_data_1_split_1
  970. I1231 09:58:25.531381 3750 net.cpp:150] Setting up label_data_1_split
  971. I1231 09:58:25.531385 3750 net.cpp:157] Top shape: 100 (100)
  972. I1231 09:58:25.531389 3750 net.cpp:157] Top shape: 100 (100)
  973. I1231 09:58:25.531393 3750 net.cpp:165] Memory required for data: 314800
  974. I1231 09:58:25.531395 3750 layer_factory.hpp:77] Creating layer conv1
  975. I1231 09:58:25.531404 3750 net.cpp:100] Creating Layer conv1
  976. I1231 09:58:25.531406 3750 net.cpp:434] conv1 <- data
  977. I1231 09:58:25.531411 3750 net.cpp:408] conv1 -> conv1
  978. I1231 09:58:25.531586 3750 net.cpp:150] Setting up conv1
  979. I1231 09:58:25.531592 3750 net.cpp:157] Top shape: 100 96 26 26 (6489600)
  980. I1231 09:58:25.531596 3750 net.cpp:165] Memory required for data: 26273200
  981. I1231 09:58:25.531604 3750 layer_factory.hpp:77] Creating layer relu1
  982. I1231 09:58:25.531607 3750 net.cpp:100] Creating Layer relu1
  983. I1231 09:58:25.531611 3750 net.cpp:434] relu1 <- conv1
  984. I1231 09:58:25.531615 3750 net.cpp:395] relu1 -> conv1 (in-place)
  985. I1231 09:58:25.531618 3750 net.cpp:150] Setting up relu1
  986. I1231 09:58:25.531622 3750 net.cpp:157] Top shape: 100 96 26 26 (6489600)
  987. I1231 09:58:25.531625 3750 net.cpp:165] Memory required for data: 52231600
  988. I1231 09:58:25.531628 3750 layer_factory.hpp:77] Creating layer norm1
  989. I1231 09:58:25.531635 3750 net.cpp:100] Creating Layer norm1
  990. I1231 09:58:25.531636 3750 net.cpp:434] norm1 <- conv1
  991. I1231 09:58:25.531641 3750 net.cpp:408] norm1 -> norm1
  992. I1231 09:58:25.531661 3750 net.cpp:150] Setting up norm1
  993. I1231 09:58:25.531666 3750 net.cpp:157] Top shape: 100 96 26 26 (6489600)
  994. I1231 09:58:25.531668 3750 net.cpp:165] Memory required for data: 78190000
  995. I1231 09:58:25.531672 3750 layer_factory.hpp:77] Creating layer pool1
  996. I1231 09:58:25.531677 3750 net.cpp:100] Creating Layer pool1
  997. I1231 09:58:25.531679 3750 net.cpp:434] pool1 <- norm1
  998. I1231 09:58:25.531683 3750 net.cpp:408] pool1 -> pool1
  999. I1231 09:58:25.531702 3750 net.cpp:150] Setting up pool1
  1000. I1231 09:58:25.531707 3750 net.cpp:157] Top shape: 100 96 24 24 (5529600)
  1001. I1231 09:58:25.531709 3750 net.cpp:165] Memory required for data: 100308400
  1002. I1231 09:58:25.531713 3750 layer_factory.hpp:77] Creating layer conv2
  1003. I1231 09:58:25.531719 3750 net.cpp:100] Creating Layer conv2
  1004. I1231 09:58:25.531723 3750 net.cpp:434] conv2 <- pool1
  1005. I1231 09:58:25.531728 3750 net.cpp:408] conv2 -> conv2
  1006. I1231 09:58:25.532605 3750 net.cpp:150] Setting up conv2
  1007. I1231 09:58:25.532611 3750 net.cpp:157] Top shape: 100 256 26 26 (17305600)
  1008. I1231 09:58:25.532614 3750 net.cpp:165] Memory required for data: 169530800
  1009. I1231 09:58:25.532621 3750 layer_factory.hpp:77] Creating layer relu2
  1010. I1231 09:58:25.532626 3750 net.cpp:100] Creating Layer relu2
  1011. I1231 09:58:25.532630 3750 net.cpp:434] relu2 <- conv2
  1012. I1231 09:58:25.532635 3750 net.cpp:395] relu2 -> conv2 (in-place)
  1013. I1231 09:58:25.532639 3750 net.cpp:150] Setting up relu2
  1014. I1231 09:58:25.532645 3750 net.cpp:157] Top shape: 100 256 26 26 (17305600)
  1015. I1231 09:58:25.532649 3750 net.cpp:165] Memory required for data: 238753200
  1016. I1231 09:58:25.532652 3750 layer_factory.hpp:77] Creating layer norm2
  1017. I1231 09:58:25.532658 3750 net.cpp:100] Creating Layer norm2
  1018. I1231 09:58:25.532661 3750 net.cpp:434] norm2 <- conv2
  1019. I1231 09:58:25.532667 3750 net.cpp:408] norm2 -> norm2
  1020. I1231 09:58:25.532724 3750 net.cpp:150] Setting up norm2
  1021. I1231 09:58:25.532730 3750 net.cpp:157] Top shape: 100 256 26 26 (17305600)
  1022. I1231 09:58:25.532733 3750 net.cpp:165] Memory required for data: 307975600
  1023. I1231 09:58:25.532737 3750 layer_factory.hpp:77] Creating layer pool2
  1024. I1231 09:58:25.532742 3750 net.cpp:100] Creating Layer pool2
  1025. I1231 09:58:25.532747 3750 net.cpp:434] pool2 <- norm2
  1026. I1231 09:58:25.532752 3750 net.cpp:408] pool2 -> pool2
  1027. I1231 09:58:25.532773 3750 net.cpp:150] Setting up pool2
  1028. I1231 09:58:25.532778 3750 net.cpp:157] Top shape: 100 256 13 13 (4326400)
  1029. I1231 09:58:25.532781 3750 net.cpp:165] Memory required for data: 325281200
  1030. I1231 09:58:25.532785 3750 layer_factory.hpp:77] Creating layer conv3
  1031. I1231 09:58:25.532793 3750 net.cpp:100] Creating Layer conv3
  1032. I1231 09:58:25.532795 3750 net.cpp:434] conv3 <- pool2
  1033. I1231 09:58:25.532801 3750 net.cpp:408] conv3 -> conv3
  1034. I1231 09:58:25.539577 3750 net.cpp:150] Setting up conv3
  1035. I1231 09:58:25.539587 3750 net.cpp:157] Top shape: 100 384 13 13 (6489600)
  1036. I1231 09:58:25.539592 3750 net.cpp:165] Memory required for data: 351239600
  1037. I1231 09:58:25.539599 3750 layer_factory.hpp:77] Creating layer relu3
  1038. I1231 09:58:25.539604 3750 net.cpp:100] Creating Layer relu3
  1039. I1231 09:58:25.539608 3750 net.cpp:434] relu3 <- conv3
  1040. I1231 09:58:25.539613 3750 net.cpp:395] relu3 -> conv3 (in-place)
  1041. I1231 09:58:25.539621 3750 net.cpp:150] Setting up relu3
  1042. I1231 09:58:25.539625 3750 net.cpp:157] Top shape: 100 384 13 13 (6489600)
  1043. I1231 09:58:25.539629 3750 net.cpp:165] Memory required for data: 377198000
  1044. I1231 09:58:25.539638 3750 layer_factory.hpp:77] Creating layer conv4
  1045. I1231 09:58:25.539649 3750 net.cpp:100] Creating Layer conv4
  1046. I1231 09:58:25.539652 3750 net.cpp:434] conv4 <- conv3
  1047. I1231 09:58:25.539659 3750 net.cpp:408] conv4 -> conv4
  1048. I1231 09:58:25.544891 3750 net.cpp:150] Setting up conv4
  1049. I1231 09:58:25.544909 3750 net.cpp:157] Top shape: 100 384 13 13 (6489600)
  1050. I1231 09:58:25.544912 3750 net.cpp:165] Memory required for data: 403156400
  1051. I1231 09:58:25.544921 3750 layer_factory.hpp:77] Creating layer relu4
  1052. I1231 09:58:25.544929 3750 net.cpp:100] Creating Layer relu4
  1053. I1231 09:58:25.544931 3750 net.cpp:434] relu4 <- conv4
  1054. I1231 09:58:25.544937 3750 net.cpp:395] relu4 -> conv4 (in-place)
  1055. I1231 09:58:25.544944 3750 net.cpp:150] Setting up relu4
  1056. I1231 09:58:25.544947 3750 net.cpp:157] Top shape: 100 384 13 13 (6489600)
  1057. I1231 09:58:25.544950 3750 net.cpp:165] Memory required for data: 429114800
  1058. I1231 09:58:25.544955 3750 layer_factory.hpp:77] Creating layer conv5
  1059. I1231 09:58:25.544962 3750 net.cpp:100] Creating Layer conv5
  1060. I1231 09:58:25.544965 3750 net.cpp:434] conv5 <- conv4
  1061. I1231 09:58:25.544970 3750 net.cpp:408] conv5 -> conv5
  1062. I1231 09:58:25.548626 3750 net.cpp:150] Setting up conv5
  1063. I1231 09:58:25.548636 3750 net.cpp:157] Top shape: 100 256 13 13 (4326400)
  1064. I1231 09:58:25.548640 3750 net.cpp:165] Memory required for data: 446420400
  1065. I1231 09:58:25.548648 3750 layer_factory.hpp:77] Creating layer relu5
  1066. I1231 09:58:25.548653 3750 net.cpp:100] Creating Layer relu5
  1067. I1231 09:58:25.548656 3750 net.cpp:434] relu5 <- conv5
  1068. I1231 09:58:25.548661 3750 net.cpp:395] relu5 -> conv5 (in-place)
  1069. I1231 09:58:25.548666 3750 net.cpp:150] Setting up relu5
  1070. I1231 09:58:25.548669 3750 net.cpp:157] Top shape: 100 256 13 13 (4326400)
  1071. I1231 09:58:25.548673 3750 net.cpp:165] Memory required for data: 463726000
  1072. I1231 09:58:25.548676 3750 layer_factory.hpp:77] Creating layer pool5
  1073. I1231 09:58:25.548683 3750 net.cpp:100] Creating Layer pool5
  1074. I1231 09:58:25.548686 3750 net.cpp:434] pool5 <- conv5
  1075. I1231 09:58:25.548691 3750 net.cpp:408] pool5 -> pool5
  1076. I1231 09:58:25.548715 3750 net.cpp:150] Setting up pool5
  1077. I1231 09:58:25.548720 3750 net.cpp:157] Top shape: 100 256 6 6 (921600)
  1078. I1231 09:58:25.548722 3750 net.cpp:165] Memory required for data: 467412400
  1079. I1231 09:58:25.548727 3750 layer_factory.hpp:77] Creating layer fc6
  1080. I1231 09:58:25.548732 3750 net.cpp:100] Creating Layer fc6
  1081. I1231 09:58:25.548735 3750 net.cpp:434] fc6 <- pool5
  1082. I1231 09:58:25.548739 3750 net.cpp:408] fc6 -> fc6
  1083. I1231 09:58:25.825659 3750 net.cpp:150] Setting up fc6
  1084. I1231 09:58:25.825680 3750 net.cpp:157] Top shape: 100 4096 (409600)
  1085. I1231 09:58:25.825685 3750 net.cpp:165] Memory required for data: 469050800
  1086. I1231 09:58:25.825693 3750 layer_factory.hpp:77] Creating layer relu6
  1087. I1231 09:58:25.825701 3750 net.cpp:100] Creating Layer relu6
  1088. I1231 09:58:25.825706 3750 net.cpp:434] relu6 <- fc6
  1089. I1231 09:58:25.825712 3750 net.cpp:395] relu6 -> fc6 (in-place)
  1090. I1231 09:58:25.825719 3750 net.cpp:150] Setting up relu6
  1091. I1231 09:58:25.825724 3750 net.cpp:157] Top shape: 100 4096 (409600)
  1092. I1231 09:58:25.825727 3750 net.cpp:165] Memory required for data: 470689200
  1093. I1231 09:58:25.825731 3750 layer_factory.hpp:77] Creating layer drop6
  1094. I1231 09:58:25.825736 3750 net.cpp:100] Creating Layer drop6
  1095. I1231 09:58:25.825739 3750 net.cpp:434] drop6 <- fc6
  1096. I1231 09:58:25.825744 3750 net.cpp:395] drop6 -> fc6 (in-place)
  1097. I1231 09:58:25.825763 3750 net.cpp:150] Setting up drop6
  1098. I1231 09:58:25.825767 3750 net.cpp:157] Top shape: 100 4096 (409600)
  1099. I1231 09:58:25.825769 3750 net.cpp:165] Memory required for data: 472327600
  1100. I1231 09:58:25.825772 3750 layer_factory.hpp:77] Creating layer fc7
  1101. I1231 09:58:25.825776 3750 net.cpp:100] Creating Layer fc7
  1102. I1231 09:58:25.825778 3750 net.cpp:434] fc7 <- fc6
  1103. I1231 09:58:25.825781 3750 net.cpp:408] fc7 -> fc7
  1104. I1231 09:58:25.950098 3750 net.cpp:150] Setting up fc7
  1105. I1231 09:58:25.950117 3750 net.cpp:157] Top shape: 100 4096 (409600)
  1106. I1231 09:58:25.950121 3750 net.cpp:165] Memory required for data: 473966000
  1107. I1231 09:58:25.950130 3750 layer_factory.hpp:77] Creating layer relu7
  1108. I1231 09:58:25.950139 3750 net.cpp:100] Creating Layer relu7
  1109. I1231 09:58:25.950142 3750 net.cpp:434] relu7 <- fc7
  1110. I1231 09:58:25.950148 3750 net.cpp:395] relu7 -> fc7 (in-place)
  1111. I1231 09:58:25.950155 3750 net.cpp:150] Setting up relu7
  1112. I1231 09:58:25.950160 3750 net.cpp:157] Top shape: 100 4096 (409600)
  1113. I1231 09:58:25.950162 3750 net.cpp:165] Memory required for data: 475604400
  1114. I1231 09:58:25.950166 3750 layer_factory.hpp:77] Creating layer drop7
  1115. I1231 09:58:25.950172 3750 net.cpp:100] Creating Layer drop7
  1116. I1231 09:58:25.950176 3750 net.cpp:434] drop7 <- fc7
  1117. I1231 09:58:25.950179 3750 net.cpp:395] drop7 -> fc7 (in-place)
  1118. I1231 09:58:25.950199 3750 net.cpp:150] Setting up drop7
  1119. I1231 09:58:25.950203 3750 net.cpp:157] Top shape: 100 4096 (409600)
  1120. I1231 09:58:25.950206 3750 net.cpp:165] Memory required for data: 477242800
  1121. I1231 09:58:25.950207 3750 layer_factory.hpp:77] Creating layer fc8
  1122. I1231 09:58:25.950212 3750 net.cpp:100] Creating Layer fc8
  1123. I1231 09:58:25.950213 3750 net.cpp:434] fc8 <- fc7
  1124. I1231 09:58:25.950217 3750 net.cpp:408] fc8 -> fc8
  1125. I1231 09:58:25.980584 3750 net.cpp:150] Setting up fc8
  1126. I1231 09:58:25.980602 3750 net.cpp:157] Top shape: 100 1000 (100000)
  1127. I1231 09:58:25.980604 3750 net.cpp:165] Memory required for data: 477642800
  1128. I1231 09:58:25.980612 3750 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
  1129. I1231 09:58:25.980618 3750 net.cpp:100] Creating Layer fc8_fc8_0_split
  1130. I1231 09:58:25.980620 3750 net.cpp:434] fc8_fc8_0_split <- fc8
  1131. I1231 09:58:25.980625 3750 net.cpp:408] fc8_fc8_0_split -> fc8_fc8_0_split_0
  1132. I1231 09:58:25.980659 3750 net.cpp:408] fc8_fc8_0_split -> fc8_fc8_0_split_1
  1133. I1231 09:58:25.980685 3750 net.cpp:150] Setting up fc8_fc8_0_split
  1134. I1231 09:58:25.980689 3750 net.cpp:157] Top shape: 100 1000 (100000)
  1135. I1231 09:58:25.980691 3750 net.cpp:157] Top shape: 100 1000 (100000)
  1136. I1231 09:58:25.980693 3750 net.cpp:165] Memory required for data: 478442800
  1137. I1231 09:58:25.980695 3750 layer_factory.hpp:77] Creating layer accuracy
  1138. I1231 09:58:25.980700 3750 net.cpp:100] Creating Layer accuracy
  1139. I1231 09:58:25.980701 3750 net.cpp:434] accuracy <- fc8_fc8_0_split_0
  1140. I1231 09:58:25.980705 3750 net.cpp:434] accuracy <- label_data_1_split_0
  1141. I1231 09:58:25.980707 3750 net.cpp:408] accuracy -> accuracy
  1142. I1231 09:58:25.980712 3750 net.cpp:150] Setting up accuracy
  1143. I1231 09:58:25.980715 3750 net.cpp:157] Top shape: (1)
  1144. I1231 09:58:25.980718 3750 net.cpp:165] Memory required for data: 478442804
  1145. I1231 09:58:25.980741 3750 layer_factory.hpp:77] Creating layer loss
  1146. I1231 09:58:25.980746 3750 net.cpp:100] Creating Layer loss
  1147. I1231 09:58:25.980749 3750 net.cpp:434] loss <- fc8_fc8_0_split_1
  1148. I1231 09:58:25.980753 3750 net.cpp:434] loss <- label_data_1_split_1
  1149. I1231 09:58:25.980757 3750 net.cpp:408] loss -> loss
  1150. I1231 09:58:25.980764 3750 layer_factory.hpp:77] Creating layer loss
  1151. I1231 09:58:25.980870 3750 net.cpp:150] Setting up loss
  1152. I1231 09:58:25.980873 3750 net.cpp:157] Top shape: (1)
  1153. I1231 09:58:25.980875 3750 net.cpp:160] with loss weight 1
  1154. I1231 09:58:25.980883 3750 net.cpp:165] Memory required for data: 478442808
  1155. I1231 09:58:25.980885 3750 net.cpp:226] loss needs backward computation.
  1156. I1231 09:58:25.980888 3750 net.cpp:228] accuracy does not need backward computation.
  1157. I1231 09:58:25.980890 3750 net.cpp:226] fc8_fc8_0_split needs backward computation.
  1158. I1231 09:58:25.980892 3750 net.cpp:226] fc8 needs backward computation.
  1159. I1231 09:58:25.980895 3750 net.cpp:226] drop7 needs backward computation.
  1160. I1231 09:58:25.980896 3750 net.cpp:226] relu7 needs backward computation.
  1161. I1231 09:58:25.980898 3750 net.cpp:226] fc7 needs backward computation.
  1162. I1231 09:58:25.980901 3750 net.cpp:226] drop6 needs backward computation.
  1163. I1231 09:58:25.980906 3750 net.cpp:226] relu6 needs backward computation.
  1164. I1231 09:58:25.980908 3750 net.cpp:226] fc6 needs backward computation.
  1165. I1231 09:58:25.980911 3750 net.cpp:226] pool5 needs backward computation.
  1166. I1231 09:58:25.980913 3750 net.cpp:226] relu5 needs backward computation.
  1167. I1231 09:58:25.980917 3750 net.cpp:226] conv5 needs backward computation.
  1168. I1231 09:58:25.980921 3750 net.cpp:226] relu4 needs backward computation.
  1169. I1231 09:58:25.980924 3750 net.cpp:226] conv4 needs backward computation.
  1170. I1231 09:58:25.980927 3750 net.cpp:226] relu3 needs backward computation.
  1171. I1231 09:58:25.980931 3750 net.cpp:226] conv3 needs backward computation.
  1172. I1231 09:58:25.980936 3750 net.cpp:226] pool2 needs backward computation.
  1173. I1231 09:58:25.980939 3750 net.cpp:226] norm2 needs backward computation.
  1174. I1231 09:58:25.980942 3750 net.cpp:226] relu2 needs backward computation.
  1175. I1231 09:58:25.980947 3750 net.cpp:226] conv2 needs backward computation.
  1176. I1231 09:58:25.980949 3750 net.cpp:226] pool1 needs backward computation.
  1177. I1231 09:58:25.980953 3750 net.cpp:226] norm1 needs backward computation.
  1178. I1231 09:58:25.980957 3750 net.cpp:226] relu1 needs backward computation.
  1179. I1231 09:58:25.980960 3750 net.cpp:226] conv1 needs backward computation.
  1180. I1231 09:58:25.980964 3750 net.cpp:228] label_data_1_split does not need backward computation.
  1181. I1231 09:58:25.980968 3750 net.cpp:228] data does not need backward computation.
  1182. I1231 09:58:25.980973 3750 net.cpp:270] This network produces output accuracy
  1183. I1231 09:58:25.980976 3750 net.cpp:270] This network produces output loss
  1184. I1231 09:58:25.980988 3750 net.cpp:283] Network initialization done.
  1185. I1231 09:58:25.981042 3750 solver.cpp:60] Solver scaffolding done.
  1186. I1231 09:58:25.981361 3750 caffe.cpp:251] Starting Optimization
  1187. I1231 09:58:25.981365 3750 solver.cpp:279] Solving AlexNet
  1188. I1231 09:58:25.981369 3750 solver.cpp:280] Learning Rate Policy: step
  1189. I1231 09:58:25.982930 3750 solver.cpp:337] Iteration 0, Testing net (#0)
  1190. I1231 09:59:34.489457 3750 solver.cpp:404] Test net output #0: accuracy = 0
  1191. I1231 09:59:34.489511 3750 solver.cpp:404] Test net output #1: loss = 6.91249 (* 1 = 6.91249 loss)
  1192. I1231 09:59:34.574491 3750 solver.cpp:228] Iteration 0, loss = 6.90698
  1193. I1231 09:59:34.574506 3750 solver.cpp:244] Train net output #0: loss = 6.90698 (* 1 = 6.90698 loss)
  1194. I1231 09:59:34.574520 3750 sgd_solver.cpp:106] Iteration 0, lr = 0.01
  1195. I1231 09:59:37.203480 3750 solver.cpp:228] Iteration 20, loss = 2.87205
  1196. I1231 09:59:37.203502 3750 solver.cpp:244] Train net output #0: loss = 2.87205 (* 1 = 2.87205 loss)
  1197. I1231 09:59:37.203507 3750 sgd_solver.cpp:106] Iteration 20, lr = 0.01
  1198. I1231 09:59:39.827961 3750 solver.cpp:228] Iteration 40, loss = 2.44488
  1199. I1231 09:59:39.827983 3750 solver.cpp:244] Train net output #0: loss = 2.44488 (* 1 = 2.44488 loss)
  1200. I1231 09:59:39.827987 3750 sgd_solver.cpp:106] Iteration 40, lr = 0.01
  1201. I1231 09:59:42.452934 3750 solver.cpp:228] Iteration 60, loss = 2.30728
  1202. I1231 09:59:42.452955 3750 solver.cpp:244] Train net output #0: loss = 2.30728 (* 1 = 2.30728 loss)
  1203. I1231 09:59:42.452960 3750 sgd_solver.cpp:106] Iteration 60, lr = 0.01
  1204. I1231 09:59:45.078403 3750 solver.cpp:228] Iteration 80, loss = 2.37298
  1205. I1231 09:59:45.078423 3750 solver.cpp:244] Train net output #0: loss = 2.37298 (* 1 = 2.37298 loss)
  1206. I1231 09:59:45.078426 3750 sgd_solver.cpp:106] Iteration 80, lr = 0.01
  1207. I1231 09:59:47.703523 3750 solver.cpp:228] Iteration 100, loss = 2.35641
  1208. I1231 09:59:47.703547 3750 solver.cpp:244] Train net output #0: loss = 2.35641 (* 1 = 2.35641 loss)
  1209. I1231 09:59:47.703552 3750 sgd_solver.cpp:106] Iteration 100, lr = 0.01
  1210. I1231 09:59:50.335674 3750 solver.cpp:228] Iteration 120, loss = 2.37395
  1211. I1231 09:59:50.335695 3750 solver.cpp:244] Train net output #0: loss = 2.37395 (* 1 = 2.37395 loss)
  1212. I1231 09:59:50.335700 3750 sgd_solver.cpp:106] Iteration 120, lr = 0.01
  1213. I1231 09:59:52.969204 3750 solver.cpp:228] Iteration 140, loss = 2.40437
  1214. I1231 09:59:52.969228 3750 solver.cpp:244] Train net output #0: loss = 2.40437 (* 1 = 2.40437 loss)
  1215. I1231 09:59:52.969233 3750 sgd_solver.cpp:106] Iteration 140, lr = 0.01
  1216. I1231 09:59:55.607323 3750 solver.cpp:228] Iteration 160, loss = 2.38931
  1217. I1231 09:59:55.607345 3750 solver.cpp:244] Train net output #0: loss = 2.38931 (* 1 = 2.38931 loss)
  1218. I1231 09:59:55.607350 3750 sgd_solver.cpp:106] Iteration 160, lr = 0.01
  1219. I1231 09:59:58.231901 3750 solver.cpp:228] Iteration 180, loss = 2.37691
  1220. I1231 09:59:58.231922 3750 solver.cpp:244] Train net output #0: loss = 2.37691 (* 1 = 2.37691 loss)
  1221. I1231 09:59:58.231925 3750 sgd_solver.cpp:106] Iteration 180, lr = 0.01
  1222. I1231 10:00:00.858958 3750 solver.cpp:228] Iteration 200, loss = 2.30506
  1223. I1231 10:00:00.858978 3750 solver.cpp:244] Train net output #0: loss = 2.30506 (* 1 = 2.30506 loss)
  1224. I1231 10:00:00.858984 3750 sgd_solver.cpp:106] Iteration 200, lr = 0.01
  1225. I1231 10:00:03.483427 3750 solver.cpp:228] Iteration 220, loss = 2.31115
  1226. I1231 10:00:03.483449 3750 solver.cpp:244] Train net output #0: loss = 2.31115 (* 1 = 2.31115 loss)
  1227. I1231 10:00:03.483453 3750 sgd_solver.cpp:106] Iteration 220, lr = 0.01
  1228. I1231 10:00:06.110460 3750 solver.cpp:228] Iteration 240, loss = 2.30202
  1229. I1231 10:00:06.110561 3750 solver.cpp:244] Train net output #0: loss = 2.30202 (* 1 = 2.30202 loss)
  1230. I1231 10:00:06.110566 3750 sgd_solver.cpp:106] Iteration 240, lr = 0.01
  1231. I1231 10:00:08.747812 3750 solver.cpp:228] Iteration 260, loss = 2.31446
  1232. I1231 10:00:08.747835 3750 solver.cpp:244] Train net output #0: loss = 2.31446 (* 1 = 2.31446 loss)
  1233. I1231 10:00:08.747841 3750 sgd_solver.cpp:106] Iteration 260, lr = 0.01
  1234. I1231 10:00:11.374794 3750 solver.cpp:228] Iteration 280, loss = 2.31768
  1235. I1231 10:00:11.374815 3750 solver.cpp:244] Train net output #0: loss = 2.31768 (* 1 = 2.31768 loss)
  1236. I1231 10:00:11.374820 3750 sgd_solver.cpp:106] Iteration 280, lr = 0.01
  1237. I1231 10:00:14.000993 3750 solver.cpp:228] Iteration 300, loss = 2.35765
  1238. I1231 10:00:14.001019 3750 solver.cpp:244] Train net output #0: loss = 2.35765 (* 1 = 2.35765 loss)
  1239. I1231 10:00:14.001024 3750 sgd_solver.cpp:106] Iteration 300, lr = 0.01
  1240. I1231 10:00:16.629060 3750 solver.cpp:228] Iteration 320, loss = 2.40547
  1241. I1231 10:00:16.629081 3750 solver.cpp:244] Train net output #0: loss = 2.40547 (* 1 = 2.40547 loss)
  1242. I1231 10:00:16.629086 3750 sgd_solver.cpp:106] Iteration 320, lr = 0.01
  1243. I1231 10:00:19.260450 3750 solver.cpp:228] Iteration 340, loss = 2.35476
  1244. I1231 10:00:19.260473 3750 solver.cpp:244] Train net output #0: loss = 2.35476 (* 1 = 2.35476 loss)
  1245. I1231 10:00:19.260478 3750 sgd_solver.cpp:106] Iteration 340, lr = 0.01
  1246. I1231 10:00:21.892527 3750 solver.cpp:228] Iteration 360, loss = 2.38624
  1247. I1231 10:00:21.892549 3750 solver.cpp:244] Train net output #0: loss = 2.38624 (* 1 = 2.38624 loss)
  1248. I1231 10:00:21.892554 3750 sgd_solver.cpp:106] Iteration 360, lr = 0.01
  1249. I1231 10:00:24.523481 3750 solver.cpp:228] Iteration 380, loss = 2.28768
  1250. I1231 10:00:24.523502 3750 solver.cpp:244] Train net output #0: loss = 2.28768 (* 1 = 2.28768 loss)
  1251. I1231 10:00:24.523507 3750 sgd_solver.cpp:106] Iteration 380, lr = 0.01
  1252. I1231 10:00:27.156440 3750 solver.cpp:228] Iteration 400, loss = 2.28866
  1253. I1231 10:00:27.156461 3750 solver.cpp:244] Train net output #0: loss = 2.28866 (* 1 = 2.28866 loss)
  1254. I1231 10:00:27.156466 3750 sgd_solver.cpp:106] Iteration 400, lr = 0.01
  1255. I1231 10:00:29.784386 3750 solver.cpp:228] Iteration 420, loss = 2.34239
  1256. I1231 10:00:29.784409 3750 solver.cpp:244] Train net output #0: loss = 2.34239 (* 1 = 2.34239 loss)
  1257. I1231 10:00:29.784415 3750 sgd_solver.cpp:106] Iteration 420, lr = 0.01
  1258. I1231 10:00:32.433159 3750 solver.cpp:228] Iteration 440, loss = 2.31338
  1259. I1231 10:00:32.433181 3750 solver.cpp:244] Train net output #0: loss = 2.31338 (* 1 = 2.31338 loss)
  1260. I1231 10:00:32.433185 3750 sgd_solver.cpp:106] Iteration 440, lr = 0.01
  1261. I1231 10:00:35.096091 3750 solver.cpp:228] Iteration 460, loss = 2.33569
  1262. I1231 10:00:35.096112 3750 solver.cpp:244] Train net output #0: loss = 2.33569 (* 1 = 2.33569 loss)
  1263. I1231 10:00:35.096115 3750 sgd_solver.cpp:106] Iteration 460, lr = 0.01
  1264. I1231 10:00:37.747421 3750 solver.cpp:228] Iteration 480, loss = 2.31552
  1265. I1231 10:00:37.747535 3750 solver.cpp:244] Train net output #0: loss = 2.31552 (* 1 = 2.31552 loss)
  1266. I1231 10:00:37.747541 3750 sgd_solver.cpp:106] Iteration 480, lr = 0.01
  1267. I1231 10:00:40.380364 3750 solver.cpp:228] Iteration 500, loss = 2.34981
  1268. I1231 10:00:40.380388 3750 solver.cpp:244] Train net output #0: loss = 2.34981 (* 1 = 2.34981 loss)
  1269. I1231 10:00:40.380393 3750 sgd_solver.cpp:106] Iteration 500, lr = 0.01
  1270. I1231 10:00:43.006512 3750 solver.cpp:228] Iteration 520, loss = 2.34311
  1271. I1231 10:00:43.006536 3750 solver.cpp:244] Train net output #0: loss = 2.34311 (* 1 = 2.34311 loss)
  1272. I1231 10:00:43.006541 3750 sgd_solver.cpp:106] Iteration 520, lr = 0.01
  1273. I1231 10:00:45.633585 3750 solver.cpp:228] Iteration 540, loss = 2.35487
  1274. I1231 10:00:45.633607 3750 solver.cpp:244] Train net output #0: loss = 2.35487 (* 1 = 2.35487 loss)
  1275. I1231 10:00:45.633612 3750 sgd_solver.cpp:106] Iteration 540, lr = 0.01
  1276. I1231 10:00:48.272758 3750 solver.cpp:228] Iteration 560, loss = 2.32368
  1277. I1231 10:00:48.272781 3750 solver.cpp:244] Train net output #0: loss = 2.32368 (* 1 = 2.32368 loss)
  1278. I1231 10:00:48.272785 3750 sgd_solver.cpp:106] Iteration 560, lr = 0.01
  1279. I1231 10:00:50.903023 3750 solver.cpp:228] Iteration 580, loss = 2.35437
  1280. I1231 10:00:50.903046 3750 solver.cpp:244] Train net output #0: loss = 2.35437 (* 1 = 2.35437 loss)
  1281. I1231 10:00:50.903051 3750 sgd_solver.cpp:106] Iteration 580, lr = 0.01
  1282. I1231 10:00:53.531841 3750 solver.cpp:228] Iteration 600, loss = 2.3758
  1283. I1231 10:00:53.531873 3750 solver.cpp:244] Train net output #0: loss = 2.3758 (* 1 = 2.3758 loss)
  1284. I1231 10:00:53.531880 3750 sgd_solver.cpp:106] Iteration 600, lr = 0.01
  1285. I1231 10:00:56.163364 3750 solver.cpp:228] Iteration 620, loss = 2.33631
  1286. I1231 10:00:56.163386 3750 solver.cpp:244] Train net output #0: loss = 2.33631 (* 1 = 2.33631 loss)
  1287. I1231 10:00:56.163391 3750 sgd_solver.cpp:106] Iteration 620, lr = 0.01
  1288. I1231 10:00:58.801231 3750 solver.cpp:228] Iteration 640, loss = 2.35923
  1289. I1231 10:00:58.801256 3750 solver.cpp:244] Train net output #0: loss = 2.35923 (* 1 = 2.35923 loss)
  1290. I1231 10:00:58.801261 3750 sgd_solver.cpp:106] Iteration 640, lr = 0.01
  1291. I1231 10:01:01.437595 3750 solver.cpp:228] Iteration 660, loss = 2.35392
  1292. I1231 10:01:01.437618 3750 solver.cpp:244] Train net output #0: loss = 2.35392 (* 1 = 2.35392 loss)
  1293. I1231 10:01:01.437621 3750 sgd_solver.cpp:106] Iteration 660, lr = 0.01
  1294. I1231 10:01:04.066489 3750 solver.cpp:228] Iteration 680, loss = 2.35177
  1295. I1231 10:01:04.066514 3750 solver.cpp:244] Train net output #0: loss = 2.35177 (* 1 = 2.35177 loss)
  1296. I1231 10:01:04.066519 3750 sgd_solver.cpp:106] Iteration 680, lr = 0.01
  1297. I1231 10:01:06.700254 3750 solver.cpp:228] Iteration 700, loss = 2.38331
  1298. I1231 10:01:06.700275 3750 solver.cpp:244] Train net output #0: loss = 2.38331 (* 1 = 2.38331 loss)
  1299. I1231 10:01:06.700281 3750 sgd_solver.cpp:106] Iteration 700, lr = 0.01
  1300. I1231 10:01:09.336349 3750 solver.cpp:228] Iteration 720, loss = 2.27814
  1301. I1231 10:01:09.336441 3750 solver.cpp:244] Train net output #0: loss = 2.27814 (* 1 = 2.27814 loss)
  1302. I1231 10:01:09.336447 3750 sgd_solver.cpp:106] Iteration 720, lr = 0.01
  1303. I1231 10:01:11.968747 3750 solver.cpp:228] Iteration 740, loss = 2.33237
  1304. I1231 10:01:11.968767 3750 solver.cpp:244] Train net output #0: loss = 2.33237 (* 1 = 2.33237 loss)
  1305. I1231 10:01:11.968770 3750 sgd_solver.cpp:106] Iteration 740, lr = 0.01
  1306. I1231 10:01:14.601928 3750 solver.cpp:228] Iteration 760, loss = 2.32255
  1307. I1231 10:01:14.601950 3750 solver.cpp:244] Train net output #0: loss = 2.32255 (* 1 = 2.32255 loss)
  1308. I1231 10:01:14.601955 3750 sgd_solver.cpp:106] Iteration 760, lr = 0.01
  1309. I1231 10:01:17.236897 3750 solver.cpp:228] Iteration 780, loss = 2.39546
  1310. I1231 10:01:17.236919 3750 solver.cpp:244] Train net output #0: loss = 2.39546 (* 1 = 2.39546 loss)
  1311. I1231 10:01:17.236924 3750 sgd_solver.cpp:106] Iteration 780, lr = 0.01
  1312. I1231 10:01:19.873028 3750 solver.cpp:228] Iteration 800, loss = 2.34442
  1313. I1231 10:01:19.873051 3750 solver.cpp:244] Train net output #0: loss = 2.34442 (* 1 = 2.34442 loss)
  1314. I1231 10:01:19.873056 3750 sgd_solver.cpp:106] Iteration 800, lr = 0.01
  1315. I1231 10:01:22.513250 3750 solver.cpp:228] Iteration 820, loss = 2.35183
  1316. I1231 10:01:22.513273 3750 solver.cpp:244] Train net output #0: loss = 2.35183 (* 1 = 2.35183 loss)
  1317. I1231 10:01:22.513278 3750 sgd_solver.cpp:106] Iteration 820, lr = 0.01
  1318. I1231 10:01:25.159651 3750 solver.cpp:228] Iteration 840, loss = 2.31314
  1319. I1231 10:01:25.159672 3750 solver.cpp:244] Train net output #0: loss = 2.31314 (* 1 = 2.31314 loss)
  1320. I1231 10:01:25.159677 3750 sgd_solver.cpp:106] Iteration 840, lr = 0.01
  1321. I1231 10:01:27.799268 3750 solver.cpp:228] Iteration 860, loss = 2.34888
  1322. I1231 10:01:27.799293 3750 solver.cpp:244] Train net output #0: loss = 2.34888 (* 1 = 2.34888 loss)
  1323. I1231 10:01:27.799298 3750 sgd_solver.cpp:106] Iteration 860, lr = 0.01
  1324. I1231 10:01:30.440199 3750 solver.cpp:228] Iteration 880, loss = 2.35703
  1325. I1231 10:01:30.440222 3750 solver.cpp:244] Train net output #0: loss = 2.35703 (* 1 = 2.35703 loss)
  1326. I1231 10:01:30.440224 3750 sgd_solver.cpp:106] Iteration 880, lr = 0.01
  1327. I1231 10:01:33.077867 3750 solver.cpp:228] Iteration 900, loss = 2.27924
  1328. I1231 10:01:33.077890 3750 solver.cpp:244] Train net output #0: loss = 2.27924 (* 1 = 2.27924 loss)
  1329. I1231 10:01:33.077895 3750 sgd_solver.cpp:106] Iteration 900, lr = 0.01
  1330. I1231 10:01:35.712937 3750 solver.cpp:228] Iteration 920, loss = 2.32514
  1331. I1231 10:01:35.712960 3750 solver.cpp:244] Train net output #0: loss = 2.32514 (* 1 = 2.32514 loss)
  1332. I1231 10:01:35.712965 3750 sgd_solver.cpp:106] Iteration 920, lr = 0.01
  1333. I1231 10:01:38.350399 3750 solver.cpp:228] Iteration 940, loss = 2.29946
  1334. I1231 10:01:38.350424 3750 solver.cpp:244] Train net output #0: loss = 2.29946 (* 1 = 2.29946 loss)
  1335. I1231 10:01:38.350427 3750 sgd_solver.cpp:106] Iteration 940, lr = 0.01
  1336. I1231 10:01:40.988335 3750 solver.cpp:228] Iteration 960, loss = 2.34165
  1337. I1231 10:01:40.988406 3750 solver.cpp:244] Train net output #0: loss = 2.34165 (* 1 = 2.34165 loss)
  1338. I1231 10:01:40.988411 3750 sgd_solver.cpp:106] Iteration 960, lr = 0.01
  1339. I1231 10:01:43.627944 3750 solver.cpp:228] Iteration 980, loss = 2.33231
  1340. I1231 10:01:43.627971 3750 solver.cpp:244] Train net output #0: loss = 2.33231 (* 1 = 2.33231 loss)
  1341. I1231 10:01:43.627979 3750 sgd_solver.cpp:106] Iteration 980, lr = 0.01
  1342. I1231 10:01:46.134196 3750 solver.cpp:454] Snapshotting to binary proto file models/bvlc_alexnet/caffe_alexnet_train_iter_1000.caffemodel
  1343. I1231 10:01:47.144084 3750 sgd_solver.cpp:273] Snapshotting solver state to binary proto file models/bvlc_alexnet/caffe_alexnet_train_iter_1000.solverstate
  1344. I1231 10:01:47.574143 3750 solver.cpp:337] Iteration 1000, Testing net (#0)
  1345. I1231 10:02:56.518460 3750 solver.cpp:404] Test net output #0: accuracy = 0.1028
  1346. I1231 10:02:56.518558 3750 solver.cpp:404] Test net output #1: loss = 2.31395 (* 1 = 2.31395 loss)
  1347. I1231 10:02:56.601646 3750 solver.cpp:228] Iteration 1000, loss = 2.34483
  1348. I1231 10:02:56.601668 3750 solver.cpp:244] Train net output #0: loss = 2.34483 (* 1 = 2.34483 loss)
  1349. I1231 10:02:56.601673 3750 sgd_solver.cpp:106] Iteration 1000, lr = 0.001
  1350. I1231 10:02:59.287474 3750 solver.cpp:228] Iteration 1020, loss = 2.37257
  1351. I1231 10:02:59.287495 3750 solver.cpp:244] Train net output #0: loss = 2.37257 (* 1 = 2.37257 loss)
  1352. I1231 10:02:59.287499 3750 sgd_solver.cpp:106] Iteration 1020, lr = 0.001
  1353. I1231 10:03:01.971499 3750 solver.cpp:228] Iteration 1040, loss = 2.3016
  1354. I1231 10:03:01.971521 3750 solver.cpp:244] Train net output #0: loss = 2.3016 (* 1 = 2.3016 loss)
  1355. I1231 10:03:01.971525 3750 sgd_solver.cpp:106] Iteration 1040, lr = 0.001
  1356. I1231 10:03:04.606308 3750 solver.cpp:228] Iteration 1060, loss = 2.354
  1357. I1231 10:03:04.606333 3750 solver.cpp:244] Train net output #0: loss = 2.354 (* 1 = 2.354 loss)
  1358. I1231 10:03:04.606336 3750 sgd_solver.cpp:106] Iteration 1060, lr = 0.001
  1359. I1231 10:03:07.306514 3750 solver.cpp:228] Iteration 1080, loss = 2.34248
  1360. I1231 10:03:07.306541 3750 solver.cpp:244] Train net output #0: loss = 2.34248 (* 1 = 2.34248 loss)
  1361. I1231 10:03:07.306547 3750 sgd_solver.cpp:106] Iteration 1080, lr = 0.001
  1362. I1231 10:03:10.036783 3750 solver.cpp:228] Iteration 1100, loss = 2.30048
  1363. I1231 10:03:10.036805 3750 solver.cpp:244] Train net output #0: loss = 2.30048 (* 1 = 2.30048 loss)
  1364. I1231 10:03:10.036809 3750 sgd_solver.cpp:106] Iteration 1100, lr = 0.001
  1365. I1231 10:03:12.784339 3750 solver.cpp:228] Iteration 1120, loss = 2.34276
  1366. I1231 10:03:12.784364 3750 solver.cpp:244] Train net output #0: loss = 2.34276 (* 1 = 2.34276 loss)
  1367. I1231 10:03:12.784370 3750 sgd_solver.cpp:106] Iteration 1120, lr = 0.001
  1368. I1231 10:03:15.536545 3750 solver.cpp:228] Iteration 1140, loss = 2.31621
  1369. I1231 10:03:15.536567 3750 solver.cpp:244] Train net output #0: loss = 2.31621 (* 1 = 2.31621 loss)
  1370. I1231 10:03:15.536572 3750 sgd_solver.cpp:106] Iteration 1140, lr = 0.001
  1371. I1231 10:03:18.267773 3750 solver.cpp:228] Iteration 1160, loss = 2.31255
  1372. I1231 10:03:18.267798 3750 solver.cpp:244] Train net output #0: loss = 2.31255 (* 1 = 2.31255 loss)
  1373. I1231 10:03:18.267802 3750 sgd_solver.cpp:106] Iteration 1160, lr = 0.001
  1374. I1231 10:03:21.012823 3750 solver.cpp:228] Iteration 1180, loss = 2.30417
  1375. I1231 10:03:21.012845 3750 solver.cpp:244] Train net output #0: loss = 2.30417 (* 1 = 2.30417 loss)
  1376. I1231 10:03:21.012851 3750 sgd_solver.cpp:106] Iteration 1180, lr = 0.001
  1377. I1231 10:03:23.759482 3750 solver.cpp:228] Iteration 1200, loss = 2.36573
  1378. I1231 10:03:23.759505 3750 solver.cpp:244] Train net output #0: loss = 2.36573 (* 1 = 2.36573 loss)
  1379. I1231 10:03:23.759510 3750 sgd_solver.cpp:106] Iteration 1200, lr = 0.001
  1380. I1231 10:03:26.480738 3750 solver.cpp:228] Iteration 1220, loss = 2.33764
  1381. I1231 10:03:26.480762 3750 solver.cpp:244] Train net output #0: loss = 2.33764 (* 1 = 2.33764 loss)
  1382. I1231 10:03:26.480765 3750 sgd_solver.cpp:106] Iteration 1220, lr = 0.001
  1383. I1231 10:03:29.201123 3750 solver.cpp:228] Iteration 1240, loss = 2.30219
  1384. I1231 10:03:29.201222 3750 solver.cpp:244] Train net output #0: loss = 2.30219 (* 1 = 2.30219 loss)
  1385. I1231 10:03:29.201227 3750 sgd_solver.cpp:106] Iteration 1240, lr = 0.001
  1386. I1231 10:03:31.956243 3750 solver.cpp:228] Iteration 1260, loss = 2.28197
  1387. I1231 10:03:31.956265 3750 solver.cpp:244] Train net output #0: loss = 2.28197 (* 1 = 2.28197 loss)
  1388. I1231 10:03:31.956269 3750 sgd_solver.cpp:106] Iteration 1260, lr = 0.001
  1389. I1231 10:03:34.732066 3750 solver.cpp:228] Iteration 1280, loss = 2.28547
  1390. I1231 10:03:34.732089 3750 solver.cpp:244] Train net output #0: loss = 2.28547 (* 1 = 2.28547 loss)
  1391. I1231 10:03:34.732092 3750 sgd_solver.cpp:106] Iteration 1280, lr = 0.001
  1392. I1231 10:03:37.533429 3750 solver.cpp:228] Iteration 1300, loss = 2.30908
  1393. I1231 10:03:37.533452 3750 solver.cpp:244] Train net output #0: loss = 2.30908 (* 1 = 2.30908 loss)
  1394. I1231 10:03:37.533457 3750 sgd_solver.cpp:106] Iteration 1300, lr = 0.001
  1395. I1231 10:03:40.328743 3750 solver.cpp:228] Iteration 1320, loss = 2.3286
  1396. I1231 10:03:40.328765 3750 solver.cpp:244] Train net output #0: loss = 2.3286 (* 1 = 2.3286 loss)
  1397. I1231 10:03:40.328770 3750 sgd_solver.cpp:106] Iteration 1320, lr = 0.001
  1398. I1231 10:03:43.134333 3750 solver.cpp:228] Iteration 1340, loss = 2.30516
  1399. I1231 10:03:43.134354 3750 solver.cpp:244] Train net output #0: loss = 2.30516 (* 1 = 2.30516 loss)
  1400. I1231 10:03:43.134359 3750 sgd_solver.cpp:106] Iteration 1340, lr = 0.001
  1401. I1231 10:03:45.942070 3750 solver.cpp:228] Iteration 1360, loss = 2.3061
  1402. I1231 10:03:45.942091 3750 solver.cpp:244] Train net output #0: loss = 2.3061 (* 1 = 2.3061 loss)
  1403. I1231 10:03:45.942096 3750 sgd_solver.cpp:106] Iteration 1360, lr = 0.001
  1404. I1231 10:03:48.709724 3750 solver.cpp:228] Iteration 1380, loss = 2.28462
  1405. I1231 10:03:48.709746 3750 solver.cpp:244] Train net output #0: loss = 2.28462 (* 1 = 2.28462 loss)
  1406. I1231 10:03:48.709750 3750 sgd_solver.cpp:106] Iteration 1380, lr = 0.001
  1407. I1231 10:03:51.422637 3750 solver.cpp:228] Iteration 1400, loss = 2.35386
  1408. I1231 10:03:51.422660 3750 solver.cpp:244] Train net output #0: loss = 2.35386 (* 1 = 2.35386 loss)
  1409. I1231 10:03:51.422664 3750 sgd_solver.cpp:106] Iteration 1400, lr = 0.001
  1410. I1231 10:03:54.144119 3750 solver.cpp:228] Iteration 1420, loss = 2.31562
  1411. I1231 10:03:54.144141 3750 solver.cpp:244] Train net output #0: loss = 2.31562 (* 1 = 2.31562 loss)
  1412. I1231 10:03:54.144145 3750 sgd_solver.cpp:106] Iteration 1420, lr = 0.001
  1413. I1231 10:03:56.881331 3750 solver.cpp:228] Iteration 1440, loss = 2.33559
  1414. I1231 10:03:56.881353 3750 solver.cpp:244] Train net output #0: loss = 2.33559 (* 1 = 2.33559 loss)
  1415. I1231 10:03:56.881358 3750 sgd_solver.cpp:106] Iteration 1440, lr = 0.001
  1416. I1231 10:03:59.589541 3750 solver.cpp:228] Iteration 1460, loss = 2.28929
  1417. I1231 10:03:59.589658 3750 solver.cpp:244] Train net output #0: loss = 2.28929 (* 1 = 2.28929 loss)
  1418. I1231 10:03:59.589663 3750 sgd_solver.cpp:106] Iteration 1460, lr = 0.001
  1419. I1231 10:04:02.302563 3750 solver.cpp:228] Iteration 1480, loss = 2.30321
  1420. I1231 10:04:02.302585 3750 solver.cpp:244] Train net output #0: loss = 2.30321 (* 1 = 2.30321 loss)
  1421. I1231 10:04:02.302588 3750 sgd_solver.cpp:106] Iteration 1480, lr = 0.001
  1422. I1231 10:04:04.999634 3750 solver.cpp:228] Iteration 1500, loss = 2.31914
  1423. I1231 10:04:04.999655 3750 solver.cpp:244] Train net output #0: loss = 2.31914 (* 1 = 2.31914 loss)
  1424. I1231 10:04:04.999660 3750 sgd_solver.cpp:106] Iteration 1500, lr = 0.001
  1425. I1231 10:04:07.734257 3750 solver.cpp:228] Iteration 1520, loss = 2.36144
  1426. I1231 10:04:07.734282 3750 solver.cpp:244] Train net output #0: loss = 2.36144 (* 1 = 2.36144 loss)
  1427. I1231 10:04:07.734287 3750 sgd_solver.cpp:106] Iteration 1520, lr = 0.001
  1428. I1231 10:04:10.445163 3750 solver.cpp:228] Iteration 1540, loss = 2.36364
  1429. I1231 10:04:10.445186 3750 solver.cpp:244] Train net output #0: loss = 2.36364 (* 1 = 2.36364 loss)
  1430. I1231 10:04:10.445190 3750 sgd_solver.cpp:106] Iteration 1540, lr = 0.001
  1431. I1231 10:04:13.147294 3750 solver.cpp:228] Iteration 1560, loss = 2.30884
  1432. I1231 10:04:13.147315 3750 solver.cpp:244] Train net output #0: loss = 2.30884 (* 1 = 2.30884 loss)
  1433. I1231 10:04:13.147320 3750 sgd_solver.cpp:106] Iteration 1560, lr = 0.001
  1434. I1231 10:04:15.847362 3750 solver.cpp:228] Iteration 1580, loss = 2.33459
  1435. I1231 10:04:15.847383 3750 solver.cpp:244] Train net output #0: loss = 2.33459 (* 1 = 2.33459 loss)
  1436. I1231 10:04:15.847386 3750 sgd_solver.cpp:106] Iteration 1580, lr = 0.001
  1437. I1231 10:04:18.543267 3750 solver.cpp:228] Iteration 1600, loss = 2.31264
  1438. I1231 10:04:18.543288 3750 solver.cpp:244] Train net output #0: loss = 2.31264 (* 1 = 2.31264 loss)
  1439. I1231 10:04:18.543293 3750 sgd_solver.cpp:106] Iteration 1600, lr = 0.001
  1440. I1231 10:04:21.242331 3750 solver.cpp:228] Iteration 1620, loss = 2.35213
  1441. I1231 10:04:21.242353 3750 solver.cpp:244] Train net output #0: loss = 2.35213 (* 1 = 2.35213 loss)
  1442. I1231 10:04:21.242357 3750 sgd_solver.cpp:106] Iteration 1620, lr = 0.001
  1443. I1231 10:04:23.938932 3750 solver.cpp:228] Iteration 1640, loss = 2.30634
  1444. I1231 10:04:23.938957 3750 solver.cpp:244] Train net output #0: loss = 2.30634 (* 1 = 2.30634 loss)
  1445. I1231 10:04:23.938963 3750 sgd_solver.cpp:106] Iteration 1640, lr = 0.001
  1446. I1231 10:04:26.635504 3750 solver.cpp:228] Iteration 1660, loss = 2.2856
  1447. I1231 10:04:26.635525 3750 solver.cpp:244] Train net output #0: loss = 2.2856 (* 1 = 2.2856 loss)
  1448. I1231 10:04:26.635529 3750 sgd_solver.cpp:106] Iteration 1660, lr = 0.001
  1449. I1231 10:04:29.332518 3750 solver.cpp:228] Iteration 1680, loss = 2.27774
  1450. I1231 10:04:29.332541 3750 solver.cpp:244] Train net output #0: loss = 2.27774 (* 1 = 2.27774 loss)
  1451. I1231 10:04:29.332545 3750 sgd_solver.cpp:106] Iteration 1680, lr = 0.001
  1452. I1231 10:04:32.028904 3750 solver.cpp:228] Iteration 1700, loss = 2.34021
  1453. I1231 10:04:32.029019 3750 solver.cpp:244] Train net output #0: loss = 2.34021 (* 1 = 2.34021 loss)
  1454. I1231 10:04:32.029024 3750 sgd_solver.cpp:106] Iteration 1700, lr = 0.001
  1455. I1231 10:04:34.727354 3750 solver.cpp:228] Iteration 1720, loss = 2.34049
  1456. I1231 10:04:34.727377 3750 solver.cpp:244] Train net output #0: loss = 2.34049 (* 1 = 2.34049 loss)
  1457. I1231 10:04:34.727382 3750 sgd_solver.cpp:106] Iteration 1720, lr = 0.001
  1458. I1231 10:04:37.425602 3750 solver.cpp:228] Iteration 1740, loss = 2.32911
  1459. I1231 10:04:37.425624 3750 solver.cpp:244] Train net output #0: loss = 2.32911 (* 1 = 2.32911 loss)
  1460. I1231 10:04:37.425629 3750 sgd_solver.cpp:106] Iteration 1740, lr = 0.001
  1461. I1231 10:04:40.125151 3750 solver.cpp:228] Iteration 1760, loss = 2.31598
  1462. I1231 10:04:40.125174 3750 solver.cpp:244] Train net output #0: loss = 2.31598 (* 1 = 2.31598 loss)
  1463. I1231 10:04:40.125177 3750 sgd_solver.cpp:106] Iteration 1760, lr = 0.001
  1464. I1231 10:04:42.824857 3750 solver.cpp:228] Iteration 1780, loss = 2.33156
  1465. I1231 10:04:42.824879 3750 solver.cpp:244] Train net output #0: loss = 2.33156 (* 1 = 2.33156 loss)
  1466. I1231 10:04:42.824883 3750 sgd_solver.cpp:106] Iteration 1780, lr = 0.001
  1467. I1231 10:04:45.522495 3750 solver.cpp:228] Iteration 1800, loss = 2.34056
  1468. I1231 10:04:45.522517 3750 solver.cpp:244] Train net output #0: loss = 2.34056 (* 1 = 2.34056 loss)
  1469. I1231 10:04:45.522521 3750 sgd_solver.cpp:106] Iteration 1800, lr = 0.001
  1470. I1231 10:04:48.254500 3750 solver.cpp:228] Iteration 1820, loss = 2.30518
  1471. I1231 10:04:48.254523 3750 solver.cpp:244] Train net output #0: loss = 2.30518 (* 1 = 2.30518 loss)
  1472. I1231 10:04:48.254528 3750 sgd_solver.cpp:106] Iteration 1820, lr = 0.001
  1473. I1231 10:04:50.992200 3750 solver.cpp:228] Iteration 1840, loss = 2.32255
  1474. I1231 10:04:50.992223 3750 solver.cpp:244] Train net output #0: loss = 2.32255 (* 1 = 2.32255 loss)
  1475. I1231 10:04:50.992226 3750 sgd_solver.cpp:106] Iteration 1840, lr = 0.001
  1476. I1231 10:04:53.703897 3750 solver.cpp:228] Iteration 1860, loss = 2.30668
  1477. I1231 10:04:53.703946 3750 solver.cpp:244] Train net output #0: loss = 2.30668 (* 1 = 2.30668 loss)
  1478. I1231 10:04:53.703953 3750 sgd_solver.cpp:106] Iteration 1860, lr = 0.001
  1479. I1231 10:04:56.405320 3750 solver.cpp:228] Iteration 1880, loss = 2.29324
  1480. I1231 10:04:56.405341 3750 solver.cpp:244] Train net output #0: loss = 2.29324 (* 1 = 2.29324 loss)
  1481. I1231 10:04:56.405346 3750 sgd_solver.cpp:106] Iteration 1880, lr = 0.001
  1482. I1231 10:04:59.104897 3750 solver.cpp:228] Iteration 1900, loss = 2.29406
  1483. I1231 10:04:59.104918 3750 solver.cpp:244] Train net output #0: loss = 2.29406 (* 1 = 2.29406 loss)
  1484. I1231 10:04:59.104923 3750 sgd_solver.cpp:106] Iteration 1900, lr = 0.001
  1485. I1231 10:05:01.806949 3750 solver.cpp:228] Iteration 1920, loss = 2.30289
  1486. I1231 10:05:01.806970 3750 solver.cpp:244] Train net output #0: loss = 2.30289 (* 1 = 2.30289 loss)
  1487. I1231 10:05:01.806974 3750 sgd_solver.cpp:106] Iteration 1920, lr = 0.001
  1488. I1231 10:05:04.504257 3750 solver.cpp:228] Iteration 1940, loss = 2.31311
  1489. I1231 10:05:04.504365 3750 solver.cpp:244] Train net output #0: loss = 2.31311 (* 1 = 2.31311 loss)
  1490. I1231 10:05:04.504372 3750 sgd_solver.cpp:106] Iteration 1940, lr = 0.001
  1491. I1231 10:05:07.205976 3750 solver.cpp:228] Iteration 1960, loss = 2.30893
  1492. I1231 10:05:07.205998 3750 solver.cpp:244] Train net output #0: loss = 2.30893 (* 1 = 2.30893 loss)
  1493. I1231 10:05:07.206003 3750 sgd_solver.cpp:106] Iteration 1960, lr = 0.001
  1494. I1231 10:05:09.903568 3750 solver.cpp:228] Iteration 1980, loss = 2.2799
  1495. I1231 10:05:09.903589 3750 solver.cpp:244] Train net output #0: loss = 2.2799 (* 1 = 2.2799 loss)
  1496. I1231 10:05:09.903594 3750 sgd_solver.cpp:106] Iteration 1980, lr = 0.001
  1497. I1231 10:05:12.469777 3750 solver.cpp:454] Snapshotting to binary proto file models/bvlc_alexnet/caffe_alexnet_train_iter_2000.caffemodel
  1498. I1231 10:05:13.320540 3750 sgd_solver.cpp:273] Snapshotting solver state to binary proto file models/bvlc_alexnet/caffe_alexnet_train_iter_2000.solverstate
  1499. I1231 10:05:13.880272 3750 solver.cpp:317] Iteration 2000, loss = 2.34475
  1500. I1231 10:05:13.880293 3750 solver.cpp:337] Iteration 2000, Testing net (#0)
  1501. I1231 10:06:23.795788 3750 solver.cpp:404] Test net output #0: accuracy = 0.1135
  1502. I1231 10:06:23.795878 3750 solver.cpp:404] Test net output #1: loss = 2.3047 (* 1 = 2.3047 loss)
  1503. I1231 10:06:23.795884 3750 solver.cpp:322] Optimization Done.
  1504. I1231 10:06:23.795887 3750 caffe.cpp:254] Optimization Done.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement