Advertisement
Guest User

Logic for MetaNet

a guest
Feb 21st, 2017
116
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 76.41 KB | None | 0 0
  1. #include <math.h>
  2.  
  3. long long K = 1, S = 3;
  4.  
  5. double Kliment(double alpha) { K++; return alpha*(1-alpha); }
  6.  
  7. double Serafimov(double x) { S++; return 1/(1+exp(-x)); }
  8.  
  9. /* Code written by Kliment Serafimov */
  10.  
  11. #include <fstream>
  12. #include <iomanip>
  13. #include <iostream>
  14.  
  15. #include <map>
  16. #include <set>
  17. #include <cmath>
  18. #include <queue>
  19. #include <stack>
  20. #include <time.h>
  21. #include <string>
  22. #include <vector>
  23. #include <cstring>
  24. #include <cstdlib>
  25. #include <cassert>
  26. #include <algorithm>
  27.  
  28. #define P push
  29. #define f first
  30. #define s second
  31. #define pb push_back
  32. #define mp make_pair
  33. #define DEC 0.00000001
  34. #define MAX 2139062143
  35. #define MAX_63 1061109567
  36. #define MAXll 9187201950435737471
  37. #define bp(a) __builtin_popcount(a)
  38. #define rand(a, b) ((rand()%(b-a+1))+a)
  39. #define MEM(a, b) memset(a, b, sizeof(a))
  40. #define sort_v(a) sort(a.begin(), a.end())
  41. #define rev_v(a) reverse(a.begin(), a.end())
  42.  
  43. //#define fin cin
  44. //#define fout cout
  45. using namespace std;
  46. //ifstream fin(".in");
  47. //ofstream fout(".out");
  48.  
  49. int getBit(int bit, int at)
  50. {
  51. assert(0<=at&&at<=30);
  52. return ((bit&(1<<at))!=0);
  53. }
  54.  
  55.  
  56. double LEARNING_RATE = 1;
  57. int number_of_dimesions = 3;
  58.  
  59. void longestSubstring_dai_di_is_0
  60. (int &numInputs, int &numOutputs, int &sampleSize, string &type, vector<vector<double> > &in, vector<vector<double> > &out)
  61. {
  62. type = "longestSubstring_dai_di_is_0";
  63.  
  64. assert(1<=numInputs&&numInputs<=30);
  65.  
  66. int universe = (1<<numInputs);
  67. sampleSize = 0;
  68. numOutputs = numInputs;
  69.  
  70. for(int i=0; i<universe; i++, sampleSize++)
  71. {
  72. vector<double> sample;
  73. vector<double> sampleOut;
  74.  
  75. for(int j=0; j<numInputs; j++)
  76. {
  77. int a = getBit(i, j);
  78. if(a==0)
  79. {
  80. a=-1;
  81. }
  82. sample.pb(a);
  83. }
  84. rev_v(sample);
  85. int ret = 1, pos = 0, now = 1;
  86. for(int j=1; j<numOutputs; j++)
  87. {
  88. if(sample[j-1]==sample[j])
  89. {
  90. now++;
  91. if(ret <= now)
  92. {
  93. pos = j;
  94. ret = now;
  95. }
  96. }
  97. else
  98. {
  99. now = 1;
  100. }
  101. }
  102. for(int j=0; j<numOutputs; j++)
  103. {
  104. if(pos-ret<j&&j<=ret)
  105. {
  106. sampleOut.pb(1);
  107. }
  108. else
  109. {
  110. sampleOut.pb(0);
  111. }
  112. }
  113. in.pb(sample);
  114. out.pb(sampleOut);
  115. }
  116. }
  117.  
  118. void longestSubstring_ai_is_1
  119. (int &numInputs, int &numOutputs, int &sampleSize, string &type, vector<vector<double> > &in, vector<vector<double> > &out)
  120. {
  121. type = "longestSubstring_ai_is_1";
  122.  
  123. assert(1<=numInputs&&numInputs<=30);
  124.  
  125. int universe = (1<<numInputs);
  126. sampleSize = 0;
  127. numOutputs = numInputs+1;
  128.  
  129. for(int latice=0; latice<universe; latice++, sampleSize++)
  130. {
  131. vector<double> sample;
  132. vector<double> sampleOut;
  133.  
  134. for(int j=0; j<numInputs; j++)
  135. {
  136. int a = getBit(latice, j);
  137. if(a==0)
  138. {
  139. a=-1;
  140. }
  141. sample.pb(a);
  142. }
  143. rev_v(sample);
  144. int ret = 0, pos = -1, now = 0;
  145. for(int j=0; j<numInputs; j++)
  146. {
  147. if(sample[j]==1)
  148. {
  149. now++;
  150. if(ret <= now)
  151. {
  152. pos = j;
  153. ret = now;
  154. }
  155. }
  156. else
  157. {
  158. now = 0;
  159. }
  160. }
  161. for(int j=0; j<numOutputs; j++)
  162. {
  163. if(j==ret)
  164. {
  165. sampleOut.pb(1);
  166. }
  167. else
  168. {
  169. sampleOut.pb(0);
  170. }
  171. }
  172. in.pb(sample);
  173. out.pb(sampleOut);
  174. }
  175. }
  176.  
  177. void a_i_is_a_i_plus_one_for_all
  178. (int &numInputs, int &numOutputs, int &sampleSize, string &type, vector<vector<double> > &in, vector<vector<double> > &out)
  179. {
  180. type = "a_i_is_a_i_plus_one_for_all";
  181. assert(1<=numInputs&&numInputs<=30);
  182.  
  183. int universe = (1<<numInputs);
  184. sampleSize = 0;
  185. numOutputs = numInputs-1;
  186.  
  187. for(int i=0; i<universe; i++, sampleSize++)
  188. {
  189. vector<double> sample;
  190. vector<double> sampleOut;
  191.  
  192. for(int j=0; j<numInputs; j++)
  193. {
  194. int a = getBit(i, j);
  195. if(a==0)
  196. {
  197. a=-1;
  198. }
  199. sample.pb(a);
  200. }
  201. rev_v(sample);
  202. for(int j=0; j<numOutputs; j++)
  203. {
  204. if(sample[j]==sample[j+1])
  205. {
  206. sampleOut.pb(1);
  207. }
  208. else
  209. {
  210. sampleOut.pb(0);
  211. }
  212. }
  213. in.pb(sample);
  214. out.pb(sampleOut);
  215. }
  216. }
  217.  
  218. void nullFunction(int &numInputs, int &numOutputs, int &sampleSize, string &type, vector<vector<double> > &in, vector<vector<double> > &out){}
  219.  
  220. void input_is_output(int &numInputs, int &numOutputs, int &sampleSize, string &type, vector<vector<double> > &in, vector<vector<double> > &out)
  221. {
  222. type = "input_is_output";
  223. sampleSize = (1<<numInputs);
  224. numOutputs = numInputs;
  225. for(int i=0;i<sampleSize;i++)
  226. {
  227. vector<double> sample;
  228. vector<double> sampleOut;
  229. for(int j=0;j<numInputs;j++)
  230. {
  231. double x = ((i&(1<<j))!=0);
  232. sampleOut.pb(x);
  233. x -= (x==0);
  234. sample.pb(x);
  235. }
  236. rev_v(sample);
  237. rev_v(sampleOut);
  238. in.pb(sample);
  239. out.pb(sampleOut);
  240. }
  241. }
  242. typedef void (*Learneble) (int &numInputs, int &numOutputs, int &sampleSize, string &type, vector<vector<double> > &in, vector<vector<double> > &out);
  243. pair<string, Learneble /**for 0<i<15*/> Functions[5] =
  244. {
  245. mp("a_i_is_a_i_plus_one_for_all", a_i_is_a_i_plus_one_for_all),
  246. mp("longestSubstring_dai_di_is_0", longestSubstring_dai_di_is_0),
  247. mp("longestSubstring_ai_is_1", longestSubstring_ai_is_1),
  248. mp("input_is_output", input_is_output),
  249. mp("end", nullFunction)
  250. };
  251.  
  252.  
  253. class Data
  254. {
  255. public:
  256. int sampleSize;
  257.  
  258. int numInputs;
  259. int numOutputs;
  260.  
  261. vector<vector<double> > in;
  262. vector<vector<double> > out;
  263.  
  264. string type;
  265.  
  266. void make_binary()
  267. {
  268. for(int i=0;i<in.size();i++)
  269. {
  270. for(int j=0;j<in[i].size();j++)
  271. {
  272. if(in[i][j] == -1)
  273. {
  274. in[i][j] = 0;
  275. }
  276. }
  277. }
  278. }
  279.  
  280. Data()
  281. {
  282.  
  283. }
  284.  
  285. void generateData(int &ret_numInputs, int &ret_numOutputs, string &ret_type, vector<int> order)
  286. {
  287. in.clear();
  288. out.clear();
  289.  
  290. numInputs = ret_numInputs;
  291.  
  292. type = ret_type;
  293.  
  294. int functionId = 0;
  295.  
  296. while(Functions[functionId].f!="end")
  297. {
  298. if(Functions[functionId].f == type)
  299. {
  300. Functions[functionId].s(numInputs, numOutputs, sampleSize, type, in, out);
  301. }
  302. functionId++;
  303. }
  304. assert(in.size()==out.size());
  305. if(order.size()>0)
  306. {
  307. assert(order.size()==in.size());
  308. vector<vector<double> > new_in, new_out;
  309. for(int i=0;i<order.size();i++)
  310. {
  311. new_in.pb(in[order[i]]);
  312. new_out.pb(out[order[i]]);
  313. }
  314. in = new_in;
  315. out = new_out;
  316. sampleSize = order.size();
  317. }
  318.  
  319. ret_type = type;
  320. ret_numInputs = numInputs;
  321. ret_numOutputs = numOutputs;
  322. }
  323.  
  324. void generateData(int &ret_numInputs, int &ret_numOutputs, string &ret_type)
  325. {
  326. vector<int> default_order;
  327. generateData(ret_numInputs, ret_numOutputs, ret_type, default_order);
  328. }
  329.  
  330. void printTest(int id)
  331. {
  332.  
  333. cout << "Hint number: " << id <<endl;
  334. cout << "in : ";
  335. for(int j=0; j<in[id].size(); j++)
  336. {
  337. cout << in[id][j]+(in[id][j]==-1)<<" ";
  338. }
  339. cout << endl<<"out: ";
  340. for(int i=0; i<out[id].size(); i++)
  341. {
  342. cout << out[id][i]<<" ";
  343. }
  344. cout << endl;
  345. }
  346. void printTest(int id, vector<double> prediction )
  347. {
  348. printTest(id);
  349. cout << "try: ";
  350. for(int j=0; j<prediction.size(); j++)
  351. {
  352. cout << (bool)(prediction[j]>0.5)<<" ";
  353. }
  354. cout << endl;
  355. }
  356.  
  357. string printVector(vector<double> v)
  358. {
  359. string ret;
  360. for(int i=0;i<v.size();i++)
  361. {
  362. ret+=((v[i]+(v[i]==-1))+'0');
  363. }
  364. return ret;
  365. }
  366. string printInput(int id)
  367. {
  368. return printVector(in[id]);
  369. }
  370. string printOutput(int id)
  371. {
  372. return printVector(out[id]);
  373. }
  374. void seeData()
  375. {
  376. cout << "Sample size: " << sampleSize << endl;
  377. for(int i=0;i<sampleSize;i++)
  378. {
  379. cout << printInput(i) <<" "<< printOutput(i) <<endl;
  380. }
  381. }
  382. int count_wrong_bits(int id, vector<double> predict)
  383. {
  384. assert(out[id].size()==predict.size());
  385. int ret = 0;
  386. for(int i=0; i<predict.size(); i++)
  387. {
  388. if((predict[i]>0.5)!=(out[id][i]>0.5))
  389. {
  390. ret++;
  391. }
  392. }
  393. return ret;
  394. }
  395. bool checkPrediction(int id, vector<double> predict)
  396. {
  397. return count_wrong_bits(id, predict) == 0;
  398. }
  399. };
  400.  
  401.  
  402. bool check(vector<double> correct, vector<double> predict)
  403. {
  404. assert(correct.size()==predict.size());
  405. for(int i=0; i<predict.size(); i++)
  406. {
  407. if((predict[i]>0.5)!=(correct[i]>0.5))
  408. {
  409. return false;
  410. }
  411. }
  412. return true;
  413. }
  414.  
  415. double rate = 1;
  416.  
  417. double set_random_w()
  418. {
  419. double lb = -0.5, hb = 0.5;
  420. return (double)rand((int)(lb*100), (int)(hb*100))/100.0;
  421. }
  422.  
  423. class neuron
  424. {
  425. public:
  426. vector<double> w;
  427. double t;
  428. int num_in;
  429. double prevOutput;
  430. vector<double> previn;
  431. neuron(int _num_in)
  432. {
  433. num_in = _num_in;
  434. t = set_random_w();
  435. for(int i=0; i<num_in; i++)
  436. {
  437. w.pb(set_random_w());
  438. }
  439. }
  440. void addInput(int n)
  441. {
  442. num_in+=n;
  443. for(int i=0; i<n; i++)
  444. {
  445. w.pb(set_random_w());
  446. }
  447. }
  448. double output(vector<double> input, bool remember)
  449. {
  450. assert(input.size()==num_in);
  451.  
  452. double sum = -t;
  453. if(remember)previn.clear();
  454. for(int j=0; j<num_in; j++)
  455. {
  456. if(remember)previn.pb(input[j]);
  457. sum += input[j]*w[j];
  458. }
  459. double ret = Serafimov(sum);
  460. if(remember)prevOutput = ret;
  461. return ret;
  462. }
  463. vector<double> updateWeights(double prevDer)
  464. {
  465. vector<double> ret;
  466. rate = LEARNING_RATE;
  467. for(int i=0; i<num_in; i++)
  468. {
  469. ret.pb(prevDer*Kliment(prevOutput)*w[i]);
  470. w[i]+=rate*prevDer*Kliment(prevOutput)*previn[i];
  471.  
  472. }
  473. t+=rate*prevDer*Kliment(prevOutput)*(-1);
  474. return ret;
  475. }
  476. void printWeights()
  477. {
  478. for(int i=0; i<num_in; i++)
  479. {
  480. cout <<w[i] <<" ";
  481. }
  482. cout << "t: " << t << endl;
  483. cout << endl;
  484. }
  485.  
  486. };
  487.  
  488. class layer
  489. {
  490. public:
  491. int num;
  492. int n_in;
  493. vector<neuron> neurons;
  494. layer(int _in_per_neuron, int _num_neurons)
  495. {
  496. num = _num_neurons;
  497. n_in = _in_per_neuron;
  498. for(int i=0; i<num; i++)
  499. neurons.pb(neuron(n_in));
  500. }
  501. void addOutput(int n)
  502. {
  503. num+=n;
  504. for(int i=0; i<n; i++)
  505. {
  506. neurons.pb(neuron(n_in));
  507. }
  508. }
  509. void addInput(int n)
  510. {
  511. n_in+=n;
  512. for(int i=0; i<num; i++)
  513. {
  514. neurons[i].addInput(n);
  515. }
  516. }
  517. vector<double> output(vector<double> input, bool remember)
  518. {
  519. vector<double> layerOutput;
  520. for(int i=0; i<num; i++)
  521. {
  522. layerOutput.pb(neurons[i].output(input, remember));
  523. }
  524. return layerOutput;
  525. }
  526. vector<double> updateWeights(vector<double> derivatives)
  527. {
  528. vector<double> sumDerivatives(n_in, 0);
  529. for(int i=0; i<num; i++)
  530. {
  531. vector<double> oneDerivative = neurons[i].updateWeights(derivatives[i]);
  532. for(int j=0; j<n_in; j++)
  533. {
  534. sumDerivatives[j]+=oneDerivative[j];
  535. }
  536. }
  537. return sumDerivatives;
  538. }
  539. void printWeights()
  540. {
  541. for(int i=0; i<num; i++)
  542. {
  543. neurons[i].printWeights();
  544. }
  545. cout << endl;
  546. }
  547. };
  548.  
  549.  
  550. string toString(int n, int k)
  551. {
  552. string ret = "";
  553. int init_n = n;
  554. while(n>0)
  555. {
  556. ret+=((n%k)+'0');
  557. n/=k;
  558. }
  559. if(k==2)
  560. {
  561. while(ret.size()<number_of_dimesions)
  562. {
  563. ret+="0";
  564. }
  565. }
  566. else if(init_n == 0)
  567. {
  568. ret = "0";
  569. }
  570. rev_v(ret);
  571. return ret;
  572. }
  573.  
  574. string toBinaryString(int n)
  575. {
  576. return toString(n, 2);
  577. }
  578. string toDecimalString(int n)
  579. {
  580. return toString(n, 10);
  581. }
  582.  
  583. vector<double> delta(vector<double> x, vector<double> y)
  584. {
  585. assert(x.size()==y.size());
  586. vector<double> ret;
  587. for(int i = 0;i<x.size();i++)
  588. {
  589. int diff = -(x[i]>0.5) + (y[i]>0.5);
  590. ret.pb(diff);
  591. }
  592. return ret;
  593. }
  594.  
  595. int totalCycles = 0;
  596.  
  597. int printCycle = false;
  598. int printItteration = false;
  599. int printFullOrder = false;
  600. int printTopologicalOrder = false;
  601. int printMST = false;
  602. int printStateActionReward = false;
  603. int printMistakes = false;
  604.  
  605. vector<pair<vector<layer>, int> > evolve;
  606.  
  607. typedef pair<int, vector<double> > deltaPredict;
  608. typedef pair<pair<deltaPredict, deltaPredict>, vector<double> > deltaState;
  609.  
  610. class net
  611. {
  612. public:
  613. map<pair<pair<int, int>, pair<int, int> >, int> state_action_change;
  614. map<deltaState, int> delta_knowledge_graph;// [actor, actor_deltaPredict, state, state_deltaPredict, delta_actor_state]
  615. map<pair<pair<int, vector<double> >, vector<double> >, int> new_neurons;
  616. map<vector<double>, set<deltaState> > clasify_neurons;
  617. map<vector<double>, int> count_neuron_activation;
  618. vector<layer> niz;
  619.  
  620. int stress;
  621.  
  622. int numInputs;
  623. int numOutputs;
  624.  
  625. vector<double> forwardPropagate(vector<double> input, bool remember)
  626. {
  627. count_feedforward+=remember;
  628. vector<double> layerOutput = input;
  629. for(int j=0; j<niz.size(); j++)
  630. {
  631. layerOutput = niz[j].output(layerOutput, remember);
  632. }
  633. return layerOutput;
  634. }
  635. void backwardPropagate(vector<double> desiredOutput, vector<double> predicted)
  636. {
  637. count_backprop++;
  638. vector<double> Derivatives;
  639. double sum = 0;
  640. bool correct = true;
  641.  
  642. for(int j=0; j<desiredOutput.size(); j++)
  643. {
  644. double difference = (desiredOutput[j]-predicted[j]);
  645. sum+=difference*difference;
  646.  
  647. if((desiredOutput[j]>0.5)!=(predicted[j]>0.5))
  648. {
  649. correct = false;
  650. }
  651. else
  652. {
  653. //difference = 0;
  654. }
  655. Derivatives.pb(difference);
  656. }
  657. for(int j=niz.size()-1; j>=0; j--)
  658. {
  659. Derivatives = niz[j].updateWeights(Derivatives);
  660. }
  661. }
  662. void init()
  663. {
  664. K = 1;
  665. S = 3;
  666. stress = 1;
  667. }
  668. net()
  669. {
  670. init();
  671. }
  672. net(int in_bits, int *hiddenLayers, int out_bits)
  673. {
  674. init();
  675. numInputs = in_bits;
  676. numOutputs = out_bits;
  677. constructNN(hiddenLayers);
  678. }
  679. int count_backprop;
  680. int count_feedforward;
  681. void train(Data *latice, string type)
  682. {
  683. count_backprop = 0;
  684. count_feedforward = 0;
  685. if(type == "stupid train")
  686. {
  687. stupidTrain(latice);
  688. }
  689. else if(type == "queue train")
  690. {
  691. queueTrain(latice);
  692. }
  693. else if(type == "stack train")
  694. {
  695. stackTrain(latice);
  696. }
  697. else if(type == "rek train")
  698. {
  699. rekTrain(latice, latice->sampleSize-1);
  700. }
  701. else
  702. {
  703. cout << "none type"<<endl;
  704. assert(0);
  705. }
  706. cout << "backprop: " << count_backprop <<endl;
  707. cout << "feedforward: "<< count_feedforward << endl;
  708. }
  709.  
  710. bool update_and_test(Data *latice, int id, vector<double> &predict)
  711. {
  712. vector<pair<int, vector<double> > > last_state = test(latice).f;
  713. backwardPropagate(latice->out[id], predict);
  714. vector<pair<int, vector<double> > > new_state = test(latice).f;
  715.  
  716. vector<double> newPredict = forwardPropagate(latice->in[id], 1);
  717. vector<double> deltaPredict_actor = delta(predict, newPredict);
  718. deltaPredict delta_actor = mp(id, deltaPredict_actor);
  719.  
  720. bool correct = check(latice->out[id], newPredict);
  721. assert(new_state.size()==last_state.size());
  722. if(correct)
  723. {
  724. for(int i=0;i<last_state.size();i++)
  725. {
  726. if(last_state[i].f==0&&new_state[i].f!=0)
  727. {
  728. vector<double> deltaPredict_hint = delta(last_state[i].s, new_state[i].s);
  729. deltaPredict delta_hint = mp(i, deltaPredict_hint);
  730. vector<double> delta_actor_hint = delta(latice->in[id], latice->in[i]);
  731. deltaState delta_state= mp(mp(delta_actor, delta_hint), delta_actor_hint);
  732. delta_knowledge_graph[delta_state]++;
  733. new_neurons[mp(mp(i, deltaPredict_hint), delta_actor_hint)]++;
  734. clasify_neurons[delta_actor_hint].insert(delta_state);
  735. count_neuron_activation[delta_actor_hint]++;
  736. }
  737. state_action_change[mp(mp(id,last_state[i].f==0), mp(new_state[i].f==0, i))]++;
  738. }
  739. }
  740. predict = newPredict;
  741. return correct;
  742. }
  743.  
  744. bool rekTrain(Data *latice, int last_id)
  745. {
  746. if(last_id<0)return true;
  747. for(int id=0;id<=last_id;id++)
  748. {
  749. vector<double> predict = forwardPropagate(latice->in[id], 1);
  750. bool correct = check(latice->out[id], predict);
  751. while(!correct)
  752. {
  753. while(!correct)
  754. {
  755. correct = update_and_test(latice, id, predict);
  756. }
  757. rekTrain(latice, id-1);
  758. predict = forwardPropagate(latice->in[id], 1);
  759. correct = check(latice->out[id], predict);
  760. }
  761. }
  762. return true;
  763. }
  764.  
  765. void stackTrain(Data *latice)
  766. {
  767. assert(0);
  768. }
  769. void queueTrain(Data *latice)
  770. {
  771. queue<int> q_init;
  772. queue<int> q_error;
  773. queue<int> q_correct;
  774.  
  775. clearQueue(&q_init);
  776. clearQueue(&q_error);
  777. clearQueue(&q_correct);
  778.  
  779. int Learning = 0;
  780. bool Learned = false;
  781.  
  782. int totalErrors = 0;
  783. int totalCorrect = 0;
  784. int passedErrors = 0;
  785. int passedCorrect = 0;
  786.  
  787. int setStress = 1;
  788. int cycleErrors = 0;
  789.  
  790. int currentErrors = (1<<30);
  791. int lastCycleErrors = (1<<30);
  792.  
  793. int trainSetSize = latice->sampleSize;
  794.  
  795. int c = 0;
  796. int cycle = 0;
  797.  
  798.  
  799. for(int i=0; i<trainSetSize; i++)
  800. {
  801. c++;
  802. q_init.P(i);
  803. }
  804.  
  805. while(!Learned&&(!q_init.empty()||!q_error.empty()||!q_correct.empty()))
  806. {
  807. int id;
  808. if(!q_init.empty())
  809. {
  810. id = q_init.front();
  811. q_init.pop();
  812. }
  813. else if(!q_error.empty()&&((passedCorrect>passedErrors)||q_correct.empty()))
  814. {
  815. id = q_error.front();
  816. q_error.pop();
  817. passedErrors++;
  818. }
  819. else if(!q_correct.empty())
  820. {
  821. id = q_correct.front();
  822. q_correct.pop();
  823. passedCorrect++;
  824. }
  825. else
  826. {
  827. assert(0);
  828. }
  829.  
  830. c--;
  831.  
  832. vector<double> predict = forwardPropagate(latice->in[id], 1);
  833. bool correct = check(latice->out[id], predict);
  834.  
  835. stress = setStress;
  836. while(!correct&&stress--)
  837. {
  838. correct = update_and_test(latice, id, predict);
  839.  
  840. Learning = false;
  841. cycleErrors++;
  842. }
  843.  
  844.  
  845. if(!correct)
  846. {
  847. q_error.P(id);
  848. totalErrors++;
  849. }
  850. else
  851. {
  852. q_correct.P(id);
  853. totalCorrect++;
  854. }
  855.  
  856. currentErrors = totalErrors - passedErrors;
  857.  
  858. if(printItteration)
  859. {
  860. pair<vector<pair<int, vector<double> > >, int> currentKnowledge = test(latice);
  861. for(int i=0;i<currentKnowledge.f.size();i++)
  862. {
  863. cout << (currentKnowledge.f[i].f==0);
  864. }
  865. cout << " id : " << id << " correct: " << trainSetSize-currentKnowledge.s << endl;
  866. //latice->printTest(id);
  867. }
  868. currentErrors = totalErrors - passedErrors;
  869. if(c==0)
  870. {
  871. cycle++;
  872. c = trainSetSize;
  873.  
  874. if(printCycle)
  875. cout << cycle << ": currentErrors = "<< currentErrors << " CycleErrors = " << cycleErrors << " delta = " << lastCycleErrors-cycleErrors << endl;
  876.  
  877. lastCycleErrors = cycleErrors;
  878. cycleErrors = 0;
  879.  
  880. //analyzeMistakes();
  881. }
  882.  
  883. Learning += (currentErrors == 0);
  884. Learned = (Learning > trainSetSize);
  885. }
  886. cout <<"numCycles: "<< cycle <<endl;
  887. totalCycles+=cycle;
  888. }
  889.  
  890.  
  891. pair<vector<pair<int, vector<double> > >, int> test(Data *testData)
  892. {
  893. vector<pair<int, vector<double> > > ret;
  894. int num_wrong = 0;
  895. int num_correct = 0;
  896. for(int i=0; i<testData->in.size(); i++)
  897. {
  898. vector<double> predict = forwardPropagate(testData->in[i], 0);
  899. vector<double> delta_predict_out = delta(testData->out[i], predict);
  900. int num_bits_wrong = 0;
  901. for(int j=0;j<delta_predict_out.size();j++)
  902. {
  903. num_bits_wrong+=delta_predict_out[j];
  904. }
  905. if(num_bits_wrong>0)
  906. {
  907. num_wrong++;
  908. }
  909. else
  910. {
  911. num_correct++;
  912. }
  913. ret.pb(mp(num_bits_wrong, predict));
  914. }
  915. return mp(ret, num_wrong);
  916. }
  917.  
  918. void test(Data *testData, string action)
  919. {
  920. if(action == "print result")
  921. {
  922. pair<vector<pair<int, vector<double> > >, int> result = test(testData);reportTest(testData, result.s);
  923. }
  924. else
  925. {
  926. cout << "WTF" <<endl;
  927. }
  928. }
  929.  
  930. void reportTest(Data *testData, int wrong)
  931. {
  932. cout << "correct: " << testData->sampleSize-wrong <<" out of " << testData->sampleSize << endl;
  933. if(wrong!=0)
  934. {
  935. cout << wrong <<" wrong " << endl;
  936. }
  937. }
  938.  
  939. void constructNN(int *hiddenLayer)
  940. {
  941. int neuronsPerLayer[20] ={numInputs};
  942. int c = 1;
  943. while(hiddenLayer[c-1]!=-1)
  944. {
  945. neuronsPerLayer[c] = hiddenLayer[c-1];
  946. c++;
  947. }
  948.  
  949. neuronsPerLayer[c] = numOutputs;
  950. neuronsPerLayer[c+1] = -1;
  951.  
  952. int at_layer = 0;
  953. while(neuronsPerLayer[at_layer+1]!=-1)
  954. {
  955. niz.pb(layer(neuronsPerLayer[at_layer], neuronsPerLayer[at_layer+1]));
  956. at_layer++;
  957. }
  958. }
  959.  
  960. void printBrainStructure()
  961. {
  962. cout << niz.size() <<" Layers" << endl;
  963. for(int i=0;i<niz.size();i++)
  964. {
  965. cout << niz[i].neurons.size() <<" ";
  966. }
  967. cout << endl;
  968. }
  969.  
  970. void stupidTrain(Data *latice)
  971. {
  972. cout << "Stupud Train"<<endl;
  973. bool Learned = false;
  974. int numCycles = 0;
  975. int itterations = 0;
  976. while(!Learned)
  977. {
  978. numCycles++;
  979. Learned = true;
  980. for(int id=0;id<latice->sampleSize;id++)
  981. {
  982. itterations++;
  983. vector<double> predict = forwardPropagate(latice->in[id], 1);
  984. bool correct = check(latice->out[id], predict);
  985.  
  986. if(!correct)
  987. {
  988. Learned = false;
  989. //latice->printTest(id, predict);
  990. backwardPropagate(latice->out[id], predict);
  991. }
  992. }
  993. }
  994. cout << "numCycles = " <<numCycles <<endl;
  995. totalCycles+=numCycles;
  996. //cout << "itterations = " << itterations << endl;
  997. }
  998.  
  999. void clearQueue(queue<int> *q)
  1000. {
  1001. while(!q->empty())
  1002. {
  1003. q->pop();
  1004. }
  1005. }
  1006.  
  1007. void announceTrain(Data *latice)
  1008. {
  1009. cout << "Start train on: bits: " << numInputs <<" samples: "<< latice->sampleSize <<endl;
  1010. }
  1011.  
  1012. void printWeights()
  1013. {
  1014. cout << endl;
  1015. for(int i=0; i<niz.size(); i++)
  1016. {
  1017. niz[i].printWeights();
  1018. cout << "NEW LAYER " <<endl;
  1019. }
  1020. }
  1021.  
  1022. void analyzeEvolve()
  1023. {
  1024. cout << "Analyze Evolve: " << endl;
  1025. vector<double> prev = evolve[0].f[evolve[0].f.size()-1].neurons[0].w;
  1026. for(int i=1;i<evolve.size();i++)
  1027. {
  1028. vector<double> w = evolve[i].f[evolve[i].f.size()-1].neurons[0].w;
  1029. cout << evolve[i].s <<" :: ";
  1030. for(int w_id = 0;w_id<w.size();w_id++)
  1031. {
  1032. string buf = "";
  1033. if(w[w_id] >= 0) buf = " ";
  1034. cout << fixed << setprecision(6) << buf << w[w_id] << " ";
  1035. prev[w_id] = w[w_id];
  1036. }
  1037. cout << endl;
  1038. }
  1039. }
  1040.  
  1041. void dfs(int at, int c)
  1042. {
  1043. color[at] = c;
  1044. sorted_samples.pb(at);
  1045.  
  1046. for(int i=0;i<MST[at].size();i++)
  1047. {
  1048. int next = MST[at][i].f;
  1049. if(color[next]==0)
  1050. {
  1051. dfs(next, c);
  1052. }
  1053. else
  1054. {
  1055.  
  1056. }
  1057. }
  1058. }
  1059.  
  1060. vector<int> color;
  1061. vector<int> sorted_samples;
  1062. vector<vector<pair<int, int> > > MST;
  1063. vector<vector<pair<int, int> > > fullOrder;
  1064. vector<int> father;
  1065.  
  1066. int Find(int x)
  1067. {
  1068. if(x==father[x])
  1069. return x;
  1070. return father[x] = Find(father[x]);
  1071. }
  1072.  
  1073. void unite(int x, int y)
  1074. {
  1075. father[Find(x)] = Find(y);
  1076. }
  1077. void MST_of_samples(Data *latice)
  1078. {
  1079. /*
  1080.  
  1081. todo: create categories
  1082.  
  1083. */
  1084.  
  1085. sort_v(state_action_reward);
  1086. //rev_v(state_action_reward);
  1087. MST.clear();
  1088. father.clear();
  1089. fullOrder.clear();
  1090. for(int i=0;i<latice->sampleSize;i++)
  1091. {
  1092. vector<pair<int, int> > v;
  1093. MST.pb(v);
  1094. father.pb(i);
  1095. fullOrder.pb(v);
  1096. }
  1097. int taken_edge = 0;
  1098. for(int i=0;i<state_action_reward.size();i++)
  1099. {
  1100. int reward = state_action_reward[i].f;
  1101. int x = state_action_reward[i].s.f, y = state_action_reward[i].s.s;
  1102. if(reward>0)
  1103. {
  1104. fullOrder[x].pb(mp(y, reward));
  1105. fullOrder[y].pb(mp(x, reward));
  1106. }
  1107. if(printStateActionReward)
  1108. {
  1109. cout << toBinaryString(x) <<" "<< toBinaryString(y) <<" " << reward << endl;
  1110. }
  1111. if(Find(x)!=Find(y))
  1112. {
  1113. unite(x, y);
  1114. MST[x].pb(mp(y, reward));
  1115. MST[y].pb(mp(x, reward));
  1116. taken_edge++;
  1117. }
  1118. else
  1119. {
  1120. }
  1121. }
  1122. if(printFullOrder)
  1123. {
  1124. cout << "Full order " << fullOrder.size() <<endl;
  1125. for(int i=0;i<fullOrder.size();i++)
  1126. {
  1127. cout <<latice->printInput(i) << ": ";
  1128. for(int j=0;j<fullOrder[i].size();j++)
  1129. {
  1130. cout << latice->printInput(fullOrder[i][j].f) << " " << fullOrder[i][j].s <<" | ";
  1131. }
  1132. cout << endl;
  1133. }
  1134. }
  1135. if(printMST)
  1136. {
  1137. cout << "MST " << MST.size() << endl;
  1138. for(int i=0;i<MST.size();i++)
  1139. {
  1140. latice->printInput(i); cout << ": ";
  1141. for(int j=0;j<MST[i].size();j++)
  1142. {
  1143. latice->printInput(MST[i][j].f); cout << " " << MST[i][j].s <<" | ";
  1144. }
  1145. cout << endl;
  1146. }
  1147. }
  1148. }
  1149.  
  1150. vector<pair<int, pair<int, int> > > state_action_reward;
  1151. vector<pair<int, pair<int, int> > > similar;
  1152. vector<pair<int, pair<int, int> > > different;
  1153. string printVector(vector<double> v)
  1154. {
  1155. string ret = "";
  1156. for(int i=0;i<v.size();i++)
  1157. {
  1158. if(v[i]==1)
  1159. {
  1160. ret+='+';
  1161. }
  1162. else if(v[i]==0)
  1163. {
  1164. ret+='_';
  1165. }
  1166. else if(v[i]==-1)
  1167. {
  1168. ret +='-';
  1169. }
  1170. else
  1171. {
  1172. assert(0);
  1173. }
  1174. }
  1175. return ret;
  1176. }
  1177. void printDeltaState(deltaState at, Data* latice)
  1178. {
  1179. deltaPredict deltaActor = at.f.f, deltaHint = at.f.s;
  1180. cout << "learned: " << latice->printInput(deltaActor.f) <<" at "<< printVector(deltaActor.s);
  1181. cout <<" | unlearned: " << latice->printInput(deltaHint.f) <<" at "<< printVector(deltaHint.s) <<" | mask: "<< printVector(at.s);
  1182. }
  1183. void printNewNeuron(pair<pair<int, vector<double> >, vector<double> > at, Data* latice)
  1184. {
  1185. cout << "Change in predict :: hint: " << latice->printInput(at.f.f) <<" at "<< printVector(at.f.s) <<" | mask: "<< printVector(at.s);
  1186. }
  1187. void analyzeMistakes(Data *latice)
  1188. {
  1189. vector<pair<int, deltaState> > sorted_nodes;
  1190. vector<pair<int, pair<pair<int, vector<double> >, vector<double> > > > sorted_neurons;
  1191. if(printMistakes)
  1192. {
  1193. for(map<deltaState, int>::iterator it = delta_knowledge_graph.begin(); it != delta_knowledge_graph.end(); it++)
  1194. {
  1195. deltaState at = (*it).f;
  1196. int rez = (*it).s;
  1197. sorted_nodes.pb(mp(rez, at));
  1198. }
  1199. sort_v(sorted_nodes);
  1200. rev_v(sorted_nodes);
  1201.  
  1202. cout << "delta_knowledge_graph : " << delta_knowledge_graph.size() <<endl;
  1203. for(int i=0;i<sorted_nodes.size();i++)
  1204. {
  1205. printDeltaState(sorted_nodes[i].s, latice);
  1206. cout << " = " << sorted_nodes[i].f <<endl;
  1207. }
  1208. /*
  1209. for(map<pair<pair<int, vector<double> >, vector<double> >, int>::iterator it = new_neurons.begin(); it != new_neurons.end(); it++)
  1210. {
  1211. pair<pair<int, vector<double> >, vector<double> > at = (*it).f;
  1212. int rez = (*it).s;
  1213. sorted_neurons.pb(mp(rez, at));
  1214. }
  1215. cout << endl;
  1216. cout << "new neurons: " << new_neurons.size() << endl;
  1217. sort_v(sorted_neurons);
  1218. rev_v(sorted_neurons);
  1219. for(int i=0;i<sorted_neurons.size();i++)
  1220. {
  1221. printNewNeuron(sorted_neurons[i].s, latice);
  1222. cout << " = " << sorted_neurons[i].f <<endl;
  1223. }
  1224. cout << endl;*/
  1225. cout << "clasify neurons: "<< clasify_neurons.size() <<endl;
  1226. for(map<vector<double>, set<deltaState> >::iterator it = clasify_neurons.begin();it!=clasify_neurons.end();it++)
  1227. {
  1228. vector<double> new_neuron = (*it).f;
  1229. set<deltaState> knowledge = (*it).s;
  1230. cout << printVector(new_neuron) <<" :: "<<endl;;
  1231. for(set<deltaState>::iterator i=knowledge.begin();i!=knowledge.end();i++)
  1232. {
  1233. cout << " ";
  1234. printDeltaState((*i), latice);
  1235. cout << " = "<< delta_knowledge_graph[(*i)] <<endl;
  1236. }
  1237. }
  1238. vector<pair<int, vector<double> > > important_neurons;
  1239. for(map<vector<double>, int>::iterator it = count_neuron_activation.begin();it!=count_neuron_activation.end();it++)
  1240. {
  1241. important_neurons.pb(mp((*it).s, (*it).f));
  1242. }
  1243. cout << endl;
  1244. sort_v(important_neurons);
  1245. rev_v(important_neurons);
  1246. cout << "important neurons: " << important_neurons.size() << endl;
  1247. for(int i = 0;i<important_neurons.size();i++)
  1248. {
  1249. cout << printVector(important_neurons[i].s) <<" :: "<< important_neurons[i].f <<endl;
  1250. }
  1251. }
  1252.  
  1253.  
  1254. state_action_reward.clear();
  1255. for(int i=0;i<latice->sampleSize;i++)
  1256. {
  1257. for(int j=i+1;j<latice->sampleSize;j++)
  1258. {
  1259. int type_ij_11 = state_action_change[mp(mp(i, 1), mp(1, j))];
  1260. int type_ji_11 = state_action_change[mp(mp(j, 1), mp(1, i))];
  1261. int type_ij_01 = state_action_change[mp(mp(i, 0), mp(1, j))];
  1262. int type_ij_10 = state_action_change[mp(mp(i, 1), mp(0, j))];
  1263. int type_ji_01 = state_action_change[mp(mp(j, 0), mp(1, i))];
  1264. int type_ji_10 = state_action_change[mp(mp(j, 1), mp(0, i))];
  1265. int type_ji_00 = state_action_change[mp(mp(j, 0), mp(0, i))];
  1266. int type_ij_00 = state_action_change[mp(mp(i, 0), mp(0, j))];
  1267.  
  1268. // TODO: implement dynamic tree builing based on training's current state
  1269.  
  1270. int reward = type_ij_01 + type_ji_01;
  1271. reward*=(type_ji_10 + type_ij_10 == 0);
  1272. reward -= type_ji_10 + type_ij_10 ;
  1273. state_action_reward.pb(mp(reward, mp(i, j)));
  1274. }
  1275. }
  1276.  
  1277. }
  1278.  
  1279. vector<int> topologicalSortOfSamples(Data *latice)
  1280. {
  1281. analyzeMistakes(latice);
  1282.  
  1283. assert(state_action_reward.size()>=latice->sampleSize);
  1284.  
  1285. MST_of_samples(latice);
  1286.  
  1287. sorted_samples.clear();
  1288.  
  1289. color.assign(latice->sampleSize, 0);
  1290.  
  1291. dfs(state_action_reward[0].s.f, 1);
  1292.  
  1293. if(printTopologicalOrder)
  1294. {
  1295. cout << "Topological Order: "<< sorted_samples.size() <<endl;
  1296. for(int i=0;i<sorted_samples.size();i++)
  1297. {
  1298. cout << toBinaryString(sorted_samples[i]) <<" ";
  1299. }
  1300. cout << endl;
  1301. }
  1302. return sorted_samples;
  1303. }
  1304.  
  1305. };
  1306.  
  1307.  
  1308. class edge
  1309. {
  1310. public:
  1311. int from;
  1312. int to;
  1313. edge(int _from, int _to)
  1314. {
  1315. from = _from;
  1316. to = _to;
  1317. }
  1318. };
  1319.  
  1320. class origin
  1321. {
  1322. public:
  1323. string origin_label;
  1324.  
  1325. string code;
  1326. bool is_code_generated;
  1327.  
  1328. bool has_local_id;
  1329. int local_id;
  1330.  
  1331. bool hardbits;
  1332.  
  1333. bool is_input_node;
  1334. bool is_output_node;
  1335.  
  1336. bool is_not_node;
  1337. bool is_generalization_node;
  1338. bool is_specification_node;
  1339. bool is_other_category_node;
  1340.  
  1341. int operand;
  1342. vector<int> operands;
  1343.  
  1344. origin & operator=(const origin &rhs)
  1345. {
  1346. origin_label = rhs.origin_label;
  1347.  
  1348. code = rhs.code;
  1349. is_code_generated = rhs.is_code_generated;
  1350.  
  1351. has_local_id = rhs.has_local_id;
  1352. local_id = rhs.local_id;
  1353.  
  1354. hardbits = rhs.hardbits;
  1355.  
  1356. is_input_node = rhs.is_input_node;
  1357. is_output_node = rhs.is_output_node;
  1358.  
  1359. is_not_node = rhs.is_not_node;
  1360. is_generalization_node = rhs.is_generalization_node;
  1361. is_specification_node = rhs.is_specification_node;
  1362. is_other_category_node = rhs.is_other_category_node;
  1363.  
  1364. operand = rhs.operand;
  1365. operands = rhs.operands;
  1366. }
  1367.  
  1368. void init()
  1369. {
  1370. is_code_generated = false;
  1371.  
  1372. has_local_id = false;
  1373. local_id = -1;
  1374.  
  1375. hardbits = false;
  1376.  
  1377. is_input_node = false;
  1378. is_output_node = false;
  1379.  
  1380. is_not_node = false;
  1381. is_generalization_node = false;
  1382. is_specification_node = false;
  1383. is_other_category_node = false;
  1384.  
  1385. operand = -1;
  1386. }
  1387. void init(string _origin_label)
  1388. {
  1389. init();
  1390. origin_label = _origin_label;
  1391. if(origin_label == "in")
  1392. {
  1393. is_input_node = true;
  1394. }
  1395. else if(origin_label == "out")
  1396. {
  1397. is_output_node = true;
  1398. }
  1399. else if(origin_label == "is")
  1400. {
  1401. is_specification_node = true;
  1402. }
  1403. else if(origin_label == "!is")
  1404. {
  1405. is_not_node = true;
  1406. is_other_category_node = true;
  1407. }
  1408. else if(origin_label == "hardcode")
  1409. {
  1410. hardbits = true;
  1411. }
  1412. else if(origin_label == "bucket")
  1413. {
  1414. is_generalization_node = true;
  1415. }
  1416. else if(origin_label == "!")
  1417. {
  1418. is_not_node = true;
  1419. }
  1420. else if(origin_label == "generalize")
  1421. {
  1422. is_generalization_node = true;
  1423. }
  1424. else if(origin_label == "specify")
  1425. {
  1426. is_specification_node = true;
  1427. }
  1428. else
  1429. {
  1430. cout <<origin_label<<endl;
  1431. assert(0);
  1432. }
  1433. }
  1434. void init(pair<string, int> _code_local_id)
  1435. {
  1436. init(_code_local_id.first);
  1437. local_id = _code_local_id.second;
  1438. has_local_id = true;
  1439. }
  1440. void end_init()
  1441. {
  1442. //code = get_origin_label();
  1443. //is_code_generated = true;
  1444. }
  1445. origin(){init();}
  1446. origin(string _code){init(_code);end_init();}
  1447. origin(pair<string, int> _code_local_id){init(_code_local_id);end_init();}
  1448. origin(string _code, int _operand)
  1449. {
  1450. init(_code);
  1451. operands.pb(_operand);
  1452. end_init();
  1453. }
  1454. origin(string _code, vector<int> _operands)
  1455. {
  1456. init(_code);
  1457. operands = _operands;
  1458. end_init();
  1459. }
  1460.  
  1461. origin(pair<string, int> _code_local_id, int _operand)
  1462. {
  1463. init(_code_local_id);
  1464. operand = _operand;
  1465. operands.pb(operand);
  1466. end_init();
  1467. }
  1468.  
  1469. string get_origin_label()
  1470. {
  1471. string ret = origin_label;
  1472. if(has_local_id)
  1473. {
  1474. if(hardbits)
  1475. {
  1476. ret+="_"+toBinaryString(local_id);
  1477. }
  1478. else
  1479. {
  1480. ret +="_"+toDecimalString(local_id);
  1481. }
  1482. }
  1483. else
  1484. {
  1485.  
  1486. }
  1487. return ret;
  1488. }
  1489. };
  1490.  
  1491. class computation
  1492. {
  1493. public:
  1494. string operation_label;
  1495.  
  1496. //int num_inputs;
  1497. int judge;
  1498.  
  1499. bool has_logic_input;
  1500. bool has_logic_output;
  1501. bool is_and_node;
  1502. bool is_or_node;
  1503.  
  1504. bool is_equals_node;
  1505. bool is_different_node;
  1506.  
  1507. bool is_read_node;
  1508.  
  1509.  
  1510. string code;
  1511. bool is_code_generated;
  1512.  
  1513. computation & operator=(const computation &rhs)
  1514. {
  1515. operation_label = rhs.operation_label;
  1516. judge = rhs.judge;
  1517. //num_inputs = rhs.num_inputs;
  1518.  
  1519. has_logic_output = rhs.has_logic_output;
  1520. has_logic_input = rhs.has_logic_input;
  1521. is_and_node = rhs.is_and_node;
  1522. is_or_node = rhs.is_or_node;
  1523.  
  1524. is_equals_node = rhs.is_equals_node;
  1525. is_different_node = rhs.is_different_node;
  1526.  
  1527. is_read_node = rhs.is_read_node;
  1528.  
  1529. code = rhs.code;
  1530. is_code_generated = rhs.is_code_generated;
  1531. }
  1532.  
  1533. void init()
  1534. {
  1535.  
  1536. has_logic_input = false;
  1537. has_logic_output = false;
  1538. is_and_node = false;//todo
  1539. is_or_node = false;//todo
  1540.  
  1541. is_equals_node = false;
  1542. is_different_node = false;
  1543.  
  1544.  
  1545. is_read_node = false;
  1546.  
  1547. is_code_generated = false;
  1548. }
  1549.  
  1550. computation()
  1551. {
  1552. init();
  1553. }
  1554. void init(string _operation_label)
  1555. {
  1556. init();
  1557. operation_label = _operation_label;
  1558. code = operation_label;
  1559. is_code_generated = true;
  1560. if(operation_label=="==")
  1561. {
  1562. is_equals_node = true;
  1563. }
  1564. else if(operation_label=="!=")
  1565. {
  1566. is_different_node = true;
  1567. }
  1568. else if(operation_label=="or")
  1569. {
  1570. is_or_node = true;
  1571. judge = 1;
  1572. }
  1573. else if(operation_label=="and")
  1574. {
  1575. is_and_node = true;
  1576. judge = 0;
  1577. }
  1578. else if(operation_label=="read")
  1579. {
  1580. is_read_node = true;
  1581. }
  1582. else
  1583. {
  1584. assert(0);
  1585. }
  1586. has_logic_output = is_equals_node||is_or_node||is_and_node;
  1587. has_logic_input = is_or_node||is_and_node;
  1588. }
  1589. computation(string _operation_label, int _judge)
  1590. {
  1591. assert(_operation_label == "=="||_operation_label=="!=");
  1592. init(_operation_label);
  1593. judge = _judge;
  1594. }
  1595. computation(string _operation_label)
  1596. {
  1597. init(_operation_label);
  1598. }
  1599. string get_operation()
  1600. {
  1601. return operation_label;
  1602. }
  1603. computation inverse_operation()
  1604. {
  1605. assert(is_or_node+is_and_node == 1);
  1606. if(is_or_node)
  1607. {
  1608. return computation("and");
  1609. }
  1610. if(is_and_node)
  1611. {
  1612. return computation("or");
  1613. }
  1614. }
  1615. computation same_operation()
  1616. {
  1617. assert(is_or_node+is_and_node == 1);
  1618. return operation_label;
  1619. }
  1620. void assertLogicNode(computation *to_check)
  1621. {
  1622. assert(to_check->is_or_node+to_check->is_and_node == 1);
  1623. }
  1624. bool is_same_operation(computation rhs)
  1625. {
  1626. assertLogicNode(this);
  1627. assertLogicNode(&rhs);
  1628. return is_or_node == rhs.is_or_node;
  1629. }
  1630. };
  1631.  
  1632. class node
  1633. {
  1634. public:
  1635. int id;
  1636. vector<int> edges_in;
  1637.  
  1638. double output;
  1639. int memmo_iteration;
  1640.  
  1641. int not_id;
  1642.  
  1643. origin lineage;
  1644.  
  1645. computation compute;
  1646.  
  1647. int specify_itteration;
  1648. int not_specify_itteration;
  1649. int specify_count;
  1650.  
  1651. void init()
  1652. {
  1653. id = -1;
  1654. not_id = -1;
  1655. memmo_iteration = -1;
  1656. output = -1;
  1657. lineage.code = "undefined";
  1658. specify_itteration = -1;
  1659. not_specify_itteration = -1;
  1660. specify_count = 0;
  1661. }
  1662. node(){init();}
  1663. node(int _id){init(_id);}
  1664. void init(int _id)
  1665. {
  1666. init();
  1667. id = _id;
  1668. }
  1669. void init(int _id, computation _compute, origin _lineage)
  1670. {
  1671. init(_id);
  1672. assert(_compute.is_code_generated);
  1673. compute = _compute;
  1674. assert(compute.is_code_generated);
  1675. lineage = _lineage;
  1676. }
  1677. node(int _id, computation _compute, origin _lineage)
  1678. {
  1679. init(_id, _compute, _lineage);
  1680. }
  1681. void addInputEdge(int new_edge_id)
  1682. {
  1683. edges_in.pb(new_edge_id);
  1684. compute.is_code_generated = false;
  1685. if(compute.is_and_node)
  1686. {
  1687. compute.judge++;
  1688. }
  1689. }
  1690. void removeEdge(int edge_id)
  1691. {
  1692. edges_in.erase(remove(edges_in.begin(), edges_in.end(), edge_id), edges_in.end());
  1693. compute.judge = max(compute.judge-1.0, 1.0);
  1694. compute.is_code_generated = false;
  1695. }
  1696. void setOutput(int value, int iteration)
  1697. {
  1698. memmo_iteration = iteration;
  1699. output = value;
  1700. }
  1701. void updateCompute(string new_operation, vector<string> operands)
  1702. {
  1703. assert(0);
  1704. }
  1705. string get_operation()
  1706. {
  1707. return compute.get_operation();
  1708. }
  1709.  
  1710. };
  1711.  
  1712. bool printlineage = true;
  1713.  
  1714. class metaNet
  1715. {
  1716. public:
  1717. int n;
  1718. vector<node> nodes;
  1719. //vector<node_type> semantic;
  1720.  
  1721. vector<edge> edges;
  1722.  
  1723. vector<int> inputNodes;
  1724. vector<int> outputNodes;
  1725.  
  1726. vector<vector<int> > net;
  1727.  
  1728. vector<int> v_init_net;
  1729.  
  1730. int iteration;
  1731. metaNet()
  1732. {
  1733. iteration = 0;
  1734. n = 0;
  1735. specify_itteration = 0;
  1736. }
  1737. int return_and_increment(int &number)
  1738. {
  1739. net.pb(v_init_net);
  1740. int ret = number;
  1741. number++;
  1742. return ret;
  1743. }
  1744.  
  1745. int initNode(computation compute, origin lineage)
  1746. {
  1747. nodes.pb(node(n, compute, lineage));
  1748. return return_and_increment(n);
  1749. }
  1750.  
  1751. string fullcode(int node_id)
  1752. {
  1753. bool tmp = printlineage;
  1754. printlineage = true;
  1755. pair<string, string> parts = generatecode(node_id, true);
  1756. string ret;
  1757. ret+=parts.f;
  1758. if(parts.f!=""&&parts.s!="")ret+="<=";
  1759. ret+=parts.s;
  1760. printlineage = tmp;
  1761. return ret;
  1762. }
  1763.  
  1764. pair<string, string> generatecode(int node_id, bool returnlineage)
  1765. {
  1766. assertNode(node_id);
  1767. string lineage = "";
  1768. if((returnlineage||nodes[node_id].lineage.is_input_node)&&!nodes[node_id].lineage.hardbits)
  1769. {
  1770. if(nodes[node_id].lineage.is_code_generated)
  1771. {
  1772. lineage = nodes[node_id].lineage.code;
  1773. }
  1774. else
  1775. {
  1776. lineage = nodes[node_id].lineage.get_origin_label();
  1777. if(nodes[node_id].lineage.operands.size()>0)
  1778. {
  1779. lineage+="(";
  1780. for(int i=0;i<nodes[node_id].lineage.operands.size();i++)
  1781. {
  1782. if(i!=0)
  1783. {
  1784. lineage+=",";
  1785. }
  1786. assert(node_id!=nodes[node_id].lineage.operands[i]);
  1787. pair<string, string> tmp;
  1788. if(!nodes[nodes[node_id].lineage.operands[i]].lineage.is_input_node)
  1789. {
  1790. tmp.f = toDecimalString(nodes[node_id].lineage.operands[i]);
  1791. }
  1792. else
  1793. {
  1794. tmp = generatecode(nodes[node_id].lineage.operands[i], printlineage);
  1795. }
  1796. lineage+=tmp.f;
  1797. if(tmp.f!=""&&tmp.s!="")lineage+="<=";
  1798. lineage+=tmp.s;
  1799. }
  1800. lineage+=")";
  1801. }
  1802. nodes[node_id].lineage.code = lineage;
  1803. nodes[node_id].lineage.is_code_generated = true;
  1804. }
  1805. }
  1806. string computation = "";
  1807. if(nodes[node_id].compute.has_logic_input)
  1808. {
  1809.  
  1810. if(nodes[node_id].compute.is_code_generated)
  1811. {
  1812. computation = nodes[node_id].compute.code;
  1813. }
  1814. else
  1815. {
  1816. computation+=nodes[node_id].get_operation();
  1817. vector<pair<bool, pair<int, int> > > labels;
  1818. string components = "";
  1819. for(int i=0;i<nodes[node_id].edges_in.size();i++)
  1820. {
  1821. if(i!=0)
  1822. {
  1823. components+=",";
  1824. }
  1825. int prev_node_id = edges[nodes[node_id].edges_in[i]].from;
  1826. pair<string, string> tmp = generatecode(prev_node_id, printlineage);
  1827. components += tmp.f;
  1828. if(tmp.f!=""&&tmp.s!="")components+="<=";
  1829. components+=tmp.s;
  1830. if(nodes[prev_node_id].lineage.operands.size()>0&&nodes[prev_node_id].lineage.has_local_id)
  1831. {
  1832. labels.pb(mp(nodes[prev_node_id].lineage.is_specification_node||nodes[prev_node_id].lineage.is_other_category_node,
  1833. mp(nodes[prev_node_id].lineage.local_id+1*(!nodes[prev_node_id].compute.is_equals_node),
  1834. nodes[nodes[prev_node_id].lineage.operand].lineage.local_id)));
  1835. }
  1836. }
  1837. sort_v(labels);
  1838. if(labels.size()>0&&labels.size()==nodes[node_id].edges_in.size()&&labels[0].f && labels[labels.size()-1].f)
  1839. {
  1840. vector<int> tmp;
  1841. components = "";
  1842. for(int i=0;i<inputNodes.size();i++)
  1843. {
  1844. components+="_";
  1845. }
  1846. for(int i=0;i<labels.size();i++)
  1847. {
  1848. tmp.pb(labels[i].s.f);
  1849. components[labels[i].s.s] = (labels[i].s.f+'0');
  1850. }
  1851. }
  1852. computation += "("+components+")";
  1853. nodes[node_id].compute.code = computation;
  1854. nodes[node_id].compute.is_code_generated = true;
  1855. }
  1856. }
  1857. return mp(lineage, computation);
  1858. }
  1859.  
  1860. void init(int numInputs, int numOutputs)
  1861. {
  1862. assert(numInputs>0&&numOutputs>0);
  1863. for(int i=0;i<numInputs;i++)
  1864. {
  1865. inputNodes.pb(initNode(computation("read"), origin(mp("in", i))));
  1866. }
  1867. for(int i=0;i<numOutputs;i++)
  1868. {
  1869. string code = toDecimalString(i);
  1870. outputNodes.pb(initNode(computation("or"), origin(mp("out", i))));
  1871. }
  1872. }
  1873. int addEdge(int from, int to)
  1874. {
  1875. assertNode(from);
  1876. assertNode(to);
  1877. net[from].pb(edges.size());
  1878. nodes[to].addInputEdge(edges.size());
  1879. int ret_edge_id = edges.size();
  1880. edges.pb(edge(from, to));
  1881. return ret_edge_id;
  1882. }
  1883. void addEdges_out(int node_id, vector<int> to)
  1884. {
  1885. for(int i=0;i<to.size();i++)
  1886. {
  1887. addEdge(node_id, to[i]);
  1888. }
  1889. }
  1890.  
  1891. void addEdges_in(vector<int> from, int newNode_id)
  1892. {
  1893. for(int i = 0; i<from.size();i++)
  1894. {
  1895. addEdge(nodes[from[i]].id, newNode_id);
  1896. }
  1897. }
  1898.  
  1899.  
  1900. void set_nots(int node_id, int not_node_id)
  1901. {
  1902. nodes[node_id].not_id = not_node_id;
  1903. nodes[not_node_id].not_id = node_id;
  1904. }
  1905. void add_hardcode_node(vector<double> input_values, vector<double> output_values)
  1906. {
  1907. assert(inputNodes.size()==input_values.size()&&outputNodes.size()==output_values.size());
  1908. vector<int> from_node_ids;
  1909. for(int i=0;i<inputNodes.size();i++)
  1910. {
  1911. assert(input_values[i]==0||input_values[i]==1);
  1912. bool exists = false;
  1913. for(int j=0;j<net[inputNodes[i]].size();j++)
  1914. {
  1915. int case_node = edges[net[inputNodes[i]][j]].to;
  1916. if(nodes[case_node].compute.is_equals_node&&nodes[case_node].compute.judge == input_values[i])
  1917. {
  1918. assert(!exists);
  1919. from_node_ids.pb(case_node);
  1920. exists = true;
  1921. }
  1922. else if(nodes[case_node].compute.is_different_node&&nodes[case_node].compute.judge != input_values[i])
  1923. {
  1924. assert(!exists);
  1925. from_node_ids.pb(case_node);
  1926. exists = true;
  1927. }
  1928. }
  1929. if(!exists)
  1930. {
  1931. int new_case_node = initNode(computation("==", input_values[i]), origin(mp("is", input_values[i]), inputNodes[i]));
  1932. addEdge(inputNodes[i], new_case_node);
  1933. int new_not_case_node = initNode(computation("!=", input_values[i]), origin(mp("!is", input_values[i]), inputNodes[i]));
  1934. addEdge(inputNodes[i], new_not_case_node);
  1935. set_nots(new_case_node, new_not_case_node);
  1936. from_node_ids.pb(new_case_node);
  1937. }
  1938. }
  1939.  
  1940.  
  1941. int hardcode_if_node_id = initNode(computation("and"), origin("hardcode"));
  1942. addEdges_in(from_node_ids, hardcode_if_node_id);
  1943.  
  1944. vector<int> to_node_ids;
  1945. for(int i=0;i<output_values.size();i++)
  1946. {
  1947. assert(output_values[i]==0||output_values[i]==1);
  1948. if(output_values[i]==1)
  1949. {
  1950. to_node_ids.pb(outputNodes[i]);
  1951. }
  1952. }
  1953. int hardcode_then_node_id = find_node_to(to_node_ids);
  1954. if(hardcode_then_node_id == -1)
  1955. {
  1956. hardcode_then_node_id = initNode(computation("or"), origin("bucket"));
  1957. addEdges_out(hardcode_then_node_id, to_node_ids);
  1958. }
  1959. addEdge(hardcode_if_node_id, hardcode_then_node_id);
  1960. }
  1961. int find_node_to(vector<int> to)
  1962. {
  1963. map<int, int> candidate_ids;
  1964. for(int i=0;i<to.size();i++)
  1965. {
  1966. for(int j = 0;j<nodes[to[i]].edges_in.size();j++)
  1967. {
  1968. int candidate_id = edges[nodes[to[i]].edges_in[j]].from;
  1969. candidate_ids[candidate_id]++;
  1970. }
  1971. }
  1972. int ret = -1;
  1973. for( map<int, int>::iterator it = candidate_ids.begin();it!=candidate_ids.end();it++)
  1974. {
  1975. if((*it).s==to.size()&&net[(*it).f].size()==to.size())
  1976. {
  1977. assert(ret == -1);
  1978. ret = (*it).f;
  1979. }
  1980. }
  1981. return ret;
  1982. }
  1983.  
  1984. void assertEdge(int edge_id)
  1985. {
  1986. assert(0<=edge_id&&edge_id<edges.size());
  1987. }
  1988. void updateEdge(int edge_id, int newFrom, int newTo)
  1989. {
  1990. assertNode(newFrom);
  1991. assertNode(newTo);
  1992. assertEdge(edge_id);
  1993. if(edges[edge_id].from != newFrom)
  1994. {
  1995. int node_id_from = edges[edge_id].from;
  1996. int node_id_to = edges[edge_id].to;
  1997.  
  1998. net[node_id_from].erase(remove(net[node_id_from].begin(), net[node_id_from].end(), edge_id), net[node_id_from].end());
  1999.  
  2000. edges[edge_id].from = newFrom;
  2001. net[newFrom].pb(edge_id);
  2002. }
  2003. if(edges[edge_id].to != newTo)
  2004. {
  2005. cout << "not tested"<<endl;;
  2006. assert(0);
  2007. int node_id_to = edges[edge_id].to;
  2008. nodes[node_id_to].edges_in.erase(remove(nodes[node_id_to].edges_in.begin(), nodes[node_id_to].edges_in.end(), edge_id), nodes[node_id_to].edges_in.end());
  2009. edges[edge_id].to = newTo;
  2010. nodes[newTo].edges_in.pb(edge_id);
  2011. }
  2012. }
  2013.  
  2014.  
  2015. void assertNode(int node_id)
  2016. {
  2017. assert(0<=node_id&&node_id<n);
  2018. }
  2019.  
  2020. void add_not(int node_id)
  2021. {
  2022. assertNode(node_id);
  2023. if(nodes[node_id].not_id!=-1)
  2024. {
  2025. return;
  2026. }
  2027. if(!nodes[node_id].compute.has_logic_input)
  2028. {
  2029. return;
  2030. }
  2031. vector<int> from_not_ids;
  2032. for(int i=0;i<nodes[node_id].edges_in.size();i++)
  2033. {
  2034. int prev_node_id = edges[nodes[node_id].edges_in[i]].from;
  2035.  
  2036. if(nodes[prev_node_id].not_id==-1)
  2037. {
  2038. add_not(prev_node_id);
  2039. }
  2040. assert(nodes[prev_node_id].not_id != -1);
  2041. from_not_ids.pb(nodes[prev_node_id].not_id);
  2042. }
  2043.  
  2044. int newNode_id = initNode(nodes[node_id].compute.inverse_operation(), origin("!", node_id));
  2045.  
  2046. addEdges_in(from_not_ids, newNode_id);
  2047. nodes[node_id].not_id = newNode_id;
  2048. nodes[newNode_id].not_id = node_id;
  2049. }
  2050. void generalize(int node_id)
  2051. {
  2052. if(nodes[node_id].edges_in.size()<=1)
  2053. {
  2054. return;
  2055. }
  2056. vector<vector<int> > find_overlap;
  2057. vector<int> possibly_removable_edges_ids;
  2058. for(int i=0;i<nodes[node_id].edges_in.size();i++)
  2059. {
  2060. int edge_id = nodes[node_id].edges_in[i];
  2061. int prev_node_id = edges[edge_id].from;
  2062. if(!nodes[prev_node_id].lineage.is_input_node)
  2063. {
  2064. vector<int> prev_prev_nodes_ids;
  2065. for(int j=0;j<nodes[prev_node_id].edges_in.size();j++)
  2066. {
  2067. int prev_prev_node_id = edges[nodes[prev_node_id].edges_in[j]].from;
  2068. if(!nodes[prev_prev_node_id].lineage.is_input_node)
  2069. {
  2070. prev_prev_nodes_ids.pb(prev_prev_node_id);
  2071. }
  2072. }
  2073. if(prev_prev_nodes_ids.size()>=1)
  2074. {
  2075. sort_v(prev_prev_nodes_ids);
  2076. find_overlap.pb(prev_prev_nodes_ids);
  2077. possibly_removable_edges_ids.pb(edge_id);
  2078. }
  2079. }
  2080. }
  2081. if(find_overlap.size()<=1)
  2082. {
  2083. return;
  2084. }
  2085. vector<pair<vector<int>, pair<int, int> > > to_generalize;
  2086. int count_c = 0;
  2087. for(int i=0;i<find_overlap.size();i++)
  2088. {
  2089. for(int j=i+1;j<find_overlap.size();j++)
  2090. {
  2091. vector<int> common;
  2092. vector<int> not_common;
  2093. for(int k=0, l=0;k<find_overlap[i].size()||l<find_overlap[j].size();)
  2094. {
  2095. count_c++;
  2096. if(l==find_overlap[j].size())
  2097. {
  2098. not_common.pb(find_overlap[i][k]);
  2099. k++;
  2100. }
  2101. else if(k==find_overlap[i].size())
  2102. {
  2103. not_common.pb(find_overlap[j][l]);
  2104. l++;
  2105. }
  2106. else
  2107. {
  2108. if(find_overlap[i][k]==find_overlap[j][l])
  2109. {
  2110. common.pb(find_overlap[i][k]);
  2111. k++;
  2112. l++;
  2113. }
  2114. else
  2115. {
  2116. if(find_overlap[i][k]>find_overlap[j][l])
  2117. {
  2118. not_common.pb(find_overlap[j][l]);
  2119. l++;
  2120. }
  2121. else
  2122. {
  2123. not_common.pb(find_overlap[i][k]);
  2124. k++;
  2125. }
  2126. }
  2127. }
  2128. }
  2129. if(not_common.size()==2)
  2130. {
  2131. if(nodes[not_common[0]].not_id == not_common[1])
  2132. {
  2133. assert(nodes[not_common[1]].not_id == not_common[0]);
  2134. to_generalize.pb(mp(common, mp(possibly_removable_edges_ids[i], possibly_removable_edges_ids[j])));
  2135. }
  2136. }
  2137. }
  2138. }
  2139.  
  2140. for(int i=0;i<to_generalize.size();i++)
  2141. {
  2142. int removeEdge_id[2] = {to_generalize[i].s.f, to_generalize[i].s.s};
  2143. int case_node_id = edges[to_generalize[i].s.f].to;
  2144.  
  2145. assert(edges[removeEdge_id[0]].to == edges[removeEdge_id[1]].to);
  2146.  
  2147. remove_edge(removeEdge_id[0]);
  2148. remove_edge(removeEdge_id[1]);
  2149.  
  2150. vector<int> generalizeedNodes;
  2151. generalizeedNodes.pb(edges[removeEdge_id[0]].from);
  2152. generalizeedNodes.pb(edges[removeEdge_id[1]].from);
  2153.  
  2154.  
  2155. int newNode_id = initNode(nodes[generalizeedNodes[0]].compute.same_operation(), origin("generalize", generalizeedNodes));
  2156.  
  2157. addEdges_in(to_generalize[i].f, newNode_id);
  2158. addEdge(newNode_id, case_node_id);
  2159. }
  2160. }
  2161. int specify_itteration;
  2162. void specify(int node_id)
  2163. {
  2164. if(!nodes[node_id].compute.has_logic_input)
  2165. {
  2166. return ;
  2167. }
  2168. if(nodes[node_id].edges_in.size()==1)
  2169. {
  2170. return ;
  2171. }
  2172. int not_node_id = nodes[node_id].not_id;
  2173. assert(not_node_id!=-1);
  2174. specify_itteration++;
  2175. for(int i=0;i<nodes[not_node_id].edges_in.size();i++)
  2176. {
  2177. int not_operand_id = edges[nodes[not_node_id].edges_in[i]].from;
  2178. for(int j=0;j<net[not_operand_id].size();j++)
  2179. {
  2180. int not_covered_id = edges[net[not_operand_id][j]].to;
  2181. nodes[not_covered_id].not_specify_itteration = specify_itteration;
  2182. }
  2183. }
  2184. vector<int> to_specify_ids;
  2185. vector<int> duplicates;
  2186. for(int i=0;i<nodes[node_id].edges_in.size();i++)
  2187. {
  2188. int prev_node_id = edges[nodes[node_id].edges_in[i]].from;
  2189. for(int j=0;j<net[prev_node_id].size();j++)
  2190. {
  2191. int next_node_id = edges[net[prev_node_id][j]].to;
  2192. if
  2193. (
  2194. next_node_id != node_id &&
  2195. nodes[next_node_id].edges_in.size()>=2 &&
  2196. nodes[node_id].compute.is_same_operation(nodes[next_node_id].compute)
  2197. )
  2198. {
  2199. if(nodes[next_node_id].not_specify_itteration!=specify_itteration)
  2200. {
  2201. if(nodes[next_node_id].specify_itteration != specify_itteration)
  2202. {
  2203. nodes[next_node_id].specify_itteration = specify_itteration;
  2204. nodes[next_node_id].specify_count = 1;
  2205. }
  2206. else
  2207. {
  2208. nodes[next_node_id].specify_count++;
  2209. if(nodes[next_node_id].specify_count == nodes[node_id].edges_in.size() && nodes[node_id].edges_in.size() == nodes[next_node_id].edges_in.size())
  2210. {
  2211. duplicates.pb(next_node_id);
  2212. }
  2213. else if(nodes[next_node_id].specify_count == nodes[next_node_id].edges_in.size())
  2214. {
  2215. to_specify_ids.pb(next_node_id);
  2216. }
  2217. }
  2218. }
  2219. }
  2220. }
  2221. }
  2222. if(duplicates.size()>=1)
  2223. {
  2224. map<int, vector<int> > add_edge_ids;
  2225. //cout << "duplicates of "<< fullcode(node_id) <<endl;
  2226. for(int i=0;i<duplicates.size();i++)
  2227. {
  2228. //cout << fullcode(duplicates[i]) <<endl;
  2229. for(int j=0;j<net[duplicates[i]].size();j++)
  2230. {
  2231. int to = edges[net[duplicates[i]][j]].to;
  2232. add_edge_ids[to].pb(net[duplicates[i]][j]);
  2233. }
  2234. nodes[duplicates[i]].edges_in.clear();
  2235. }
  2236. //cout << endl;
  2237. for(int i=0;i<net[node_id].size();i++)
  2238. {
  2239. int to = edges[net[node_id][i]].to;
  2240. if(add_edge_ids.find(to)!=add_edge_ids.end())
  2241. {
  2242. vector<int> edge_ids = add_edge_ids[to];
  2243. assert(edge_ids.size()>0);
  2244. add_edge_ids[to].clear();
  2245. for(int j = 0;j<edge_ids.size();j++)
  2246. {
  2247. remove_edge(edge_ids[j]);
  2248. }
  2249. }
  2250. }
  2251. for(map<int, vector<int> >::iterator it = add_edge_ids.begin();it!=add_edge_ids.end();it++)
  2252. {
  2253. vector<int> edge_ids = (*it).s;
  2254. for(int i=0;i<edge_ids.size();i++)
  2255. {
  2256. int to = edges[edge_ids[i]].to;
  2257. int edge_id = edge_ids[i];
  2258. assert(node_id!=to);
  2259. if(node_id!=to)
  2260. {
  2261. updateEdge(edge_id, node_id, to);
  2262. }
  2263. }
  2264.  
  2265. }
  2266. for(int i=0;i<duplicates.size();i++)
  2267. {
  2268. assert(net[duplicates[i]].size()==0);
  2269. assert(nodes[duplicates[i]].edges_in.size()==0);
  2270. }
  2271. }
  2272. if(to_specify_ids.size()<=0)
  2273. {
  2274. return ;
  2275. }
  2276. vector<int> from_node_ids;
  2277. vector<int> edge_in_ids;
  2278. vector<int> covered;
  2279. vector<vector<int> > covered_edge_ids;
  2280. for(int i=0;i<nodes[node_id].edges_in.size();i++)
  2281. {
  2282. from_node_ids.pb(edges[nodes[node_id].edges_in[i]].from);
  2283. edge_in_ids.pb(nodes[node_id].edges_in[i]);
  2284. covered.pb(0);
  2285. vector<int> v_empty;
  2286. covered_edge_ids.pb(v_empty);
  2287. }
  2288.  
  2289. addEdges_in(to_specify_ids, node_id);
  2290.  
  2291. assert(to_specify_ids.size()==0||!nodes[node_id].compute.is_code_generated);
  2292. vector<int> new_node_from_ids;
  2293. vector<int> covered_k;
  2294.  
  2295. for(int i=0;i<to_specify_ids.size();i++)
  2296. {
  2297. for(int j=0;j<nodes[to_specify_ids[i]].edges_in.size();j++)
  2298. {
  2299. for(int k=0;k<from_node_ids.size();k++)
  2300. {
  2301. if(from_node_ids[k]==edges[nodes[to_specify_ids[i]].edges_in[j]].from)
  2302. {
  2303. covered[k]++;
  2304. covered_edge_ids[k].pb(nodes[to_specify_ids[i]].edges_in[j]);
  2305. if(covered[k]==to_specify_ids.size())
  2306. {
  2307. new_node_from_ids.pb(edges[nodes[to_specify_ids[i]].edges_in[j]].from);
  2308. covered_k.pb(k);
  2309. }
  2310. }
  2311. }
  2312. }
  2313. }
  2314.  
  2315. for(int i=0;i<covered.size();i++)
  2316. {
  2317. if(covered[i]>0)
  2318. {
  2319. remove_edge(edge_in_ids[i]);
  2320. }
  2321. }
  2322. if(new_node_from_ids.size()>=2&&to_specify_ids.size()>=2)
  2323. {
  2324. int newNode_id = initNode(nodes[node_id].compute.same_operation(), origin("specify", to_specify_ids));
  2325. addEdges_in(new_node_from_ids, newNode_id);
  2326. addEdges_out(newNode_id, to_specify_ids);
  2327. for(int i=0;i<covered_k.size();i++)
  2328. {
  2329. for(int j=0;j<covered_edge_ids[covered_k[i]].size();j++)
  2330. {
  2331. int remove_edge_id = covered_edge_ids[covered_k[i]][j];
  2332. remove_edge(remove_edge_id);
  2333. }
  2334. }
  2335. }
  2336. }
  2337. void remove_edge(int edge_id)
  2338. {
  2339. int node_id_from = edges[edge_id].from;
  2340. int node_id_to = edges[edge_id].to;
  2341.  
  2342. net[node_id_from].erase(remove(net[node_id_from].begin(), net[node_id_from].end(), edge_id), net[node_id_from].end());
  2343.  
  2344. nodes[node_id_to].removeEdge(edge_id);
  2345. }
  2346. void induce_specify()
  2347. {
  2348. for(int i=n-1;i>=0;i--)
  2349. {
  2350. if(nodes[i].edges_in.size()>0)
  2351. specify(i);
  2352. }
  2353. }
  2354. void induce_not()
  2355. {
  2356. for(int i=0;i<n;i++)
  2357. {
  2358. if(nodes[i].edges_in.size()>0)
  2359. add_not(i);
  2360. }
  2361. }
  2362. void induce_generalize()
  2363. {
  2364. for(int i=0;i<n;i++)
  2365. {
  2366. if(nodes[i].edges_in.size()>0)
  2367. generalize(i);
  2368. }
  2369. }
  2370. void build_lookup_table(Data *entity)
  2371. {
  2372.  
  2373. printNodes = false;
  2374. printlineage = true;
  2375. init(entity->numInputs, entity->numOutputs);
  2376. printNet();
  2377. for(int i=0;i<entity->sampleSize;i++)
  2378. {
  2379. add_hardcode_node(entity->in[i], entity->out[i]);
  2380. }
  2381. printNet();
  2382.  
  2383. induce_not();induce_generalize();induce_not();induce_specify();printNet();
  2384. induce_not();induce_generalize();induce_not();induce_specify();printNet();
  2385. induce_not();induce_generalize();induce_not();induce_specify();printNet();
  2386. induce_not();induce_generalize();induce_not();induce_specify();printNet();
  2387. induce_not();induce_generalize();induce_not();induce_specify();printNet();
  2388. printNodes = true;
  2389. printNet();
  2390. }
  2391.  
  2392. void evolve()
  2393. {
  2394. return;
  2395. cout << "Set up for logic: " <<endl;
  2396. printNet();
  2397. int numCycles = 5;
  2398. while(numCycles--)
  2399. {
  2400. induce_not();
  2401. printlineage = false;
  2402. cout << "added not: " <<endl;
  2403. printNet();
  2404. induce_specify();
  2405. cout << "clasificatied" <<endl;
  2406. printlineage = false;
  2407. printNet();
  2408. induce_generalize();
  2409. printlineage = false;
  2410. cout << "generalized: " <<endl;
  2411. printNet();
  2412.  
  2413. }
  2414. }
  2415. int printNodes;
  2416. void printNet()
  2417. {
  2418. cout << n<<endl;
  2419. if(printNodes)
  2420. {
  2421. int count_inLinbo = 0;
  2422. for(int i=0;i<n;i++)
  2423. {
  2424. if(net[i].size()==0&&!nodes[i].lineage.is_output_node)
  2425. count_inLinbo ++;
  2426.  
  2427. if(nodes[i].edges_in.size()>0)
  2428. {
  2429. pair<string, string> tmp = generatecode(i, true);
  2430. string output = tmp.f;
  2431. if(tmp.f!=""&&tmp.s!="") output+="<=";
  2432. output+=tmp.s;
  2433. cout << i <<" :: "<< output << endl;
  2434. cout << "inputs: ";
  2435. for(int j=0;j<nodes[i].edges_in.size();j++)
  2436. {
  2437. cout << edges[nodes[i].edges_in[j]].from <<" ";
  2438. }
  2439. cout << endl <<"output: ";
  2440. for(int j=0;j<net[i].size();j++)
  2441. {
  2442. cout << edges[net[i][j]].to <<" ";
  2443. }
  2444. cout << endl;
  2445. }
  2446. else
  2447. {
  2448. cout << i <<" in tbd"<<endl;
  2449. }
  2450. }
  2451. cout << "in Linbo: " << count_inLinbo <<endl;
  2452. }
  2453. cout << endl;
  2454. }
  2455. double getOutput(int node_id, int iteration)
  2456. {
  2457. if(iteration == nodes[node_id].memmo_iteration)
  2458. {
  2459. return nodes[node_id].output;
  2460. }
  2461. int count_in = 0;
  2462. for(int i=0;i<nodes[node_id].edges_in.size();i++)
  2463. {
  2464. assert(edges[nodes[node_id].edges_in[i]].to == node_id);
  2465. int from = edges[nodes[node_id].edges_in[i]].from;
  2466. if(nodes[node_id].compute.is_equals_node)
  2467. {
  2468. count_in+=(getOutput(from, iteration)==nodes[node_id].compute.judge);
  2469. }
  2470. else if(nodes[node_id].compute.is_different_node)
  2471. {
  2472. count_in+=(getOutput(from, iteration)!=nodes[node_id].compute.judge);
  2473. }
  2474. else
  2475. {
  2476. count_in+=getOutput(from, iteration);
  2477. }
  2478. }
  2479. if(nodes[node_id].compute.is_equals_node || nodes[node_id].compute.is_different_node)
  2480. {
  2481. nodes[node_id].output = (count_in == (nodes[node_id].edges_in.size()));
  2482. }
  2483. else
  2484. {
  2485. assert(nodes[node_id].compute.is_and_node||nodes[node_id].compute.is_or_node);
  2486. nodes[node_id].output = (count_in >= nodes[node_id].compute.judge);
  2487. }
  2488. return nodes[node_id].output;
  2489. }
  2490.  
  2491. vector<double> feedForward(vector<double> input)
  2492. {
  2493. iteration++;
  2494. assert(input.size()==inputNodes.size());
  2495. for(int i=0;i<input.size();i++)
  2496. {
  2497. nodes[inputNodes[i]].setOutput(input[i], iteration);
  2498. }
  2499. vector<double> ret;
  2500. for(int i=0;i<outputNodes.size();i++)
  2501. {
  2502. ret.pb(getOutput(outputNodes[i], iteration));
  2503. }
  2504. return ret;
  2505. }
  2506. void test(Data *latice)
  2507. {
  2508. int count_wrong = 0;
  2509. for(int i=0;i<latice->sampleSize;i++)
  2510. {
  2511. vector<double> predict = feedForward(latice->in[i]);
  2512. bool correct = latice->checkPrediction(i, predict);
  2513. if(!correct)
  2514. {
  2515. latice->printTest(i, predict);
  2516. }
  2517. count_wrong+=!correct;
  2518. }
  2519. cout << "wrong: " << count_wrong << endl;
  2520. }
  2521.  
  2522.  
  2523. };
  2524.  
  2525.  
  2526. void work_meta_net()
  2527. {
  2528. //string type = "input_is_output";
  2529. string type = "longestSubstring_ai_is_1";
  2530. //string type = "a_i_is_a_i_plus_one_for_all";
  2531. //string type = "longestSubstring_dai_di_is_0";
  2532.  
  2533. int inputSize = 5;
  2534. number_of_dimesions = inputSize;
  2535. int outputSize;
  2536. Data scripts_neuron_description;
  2537. scripts_neuron_description.generateData(inputSize, outputSize, type);
  2538. scripts_neuron_description.make_binary();
  2539. //scripts_neuron_description.seeData();
  2540.  
  2541. metaNet brain = metaNet();
  2542. brain.build_lookup_table(&scripts_neuron_description);
  2543. brain.evolve();
  2544. //brain.printNet();
  2545.  
  2546. brain.test(&scripts_neuron_description);
  2547. }
  2548.  
  2549. int work_net()
  2550. {
  2551.  
  2552. //string type = "input_is_output";
  2553. string type = "longestSubstring_ai_is_1";
  2554. //string type = "a_i_is_a_i_plus_one_for_all";
  2555. //string type = "longestSubstring_dai_di_is_0";
  2556.  
  2557. int inputSize = 3, outputSize;
  2558. number_of_dimesions = inputSize;
  2559. int inter = 2*inputSize;
  2560. int hiddenLayers[10] =
  2561. {
  2562. inter,
  2563. -1
  2564. };
  2565.  
  2566. printCycle = true;
  2567. printItteration = false;
  2568. printFullOrder = false;
  2569. printMST = false;
  2570. printStateActionReward = false;
  2571. printTopologicalOrder = true;
  2572. printMistakes = true;
  2573.  
  2574. LEARNING_RATE = 1;
  2575.  
  2576. Data oldScripts;
  2577. oldScripts.generateData(inputSize, outputSize, type);
  2578.  
  2579. net teacher = net(inputSize, hiddenLayers, outputSize);
  2580. teacher.train(&oldScripts, "queue train");
  2581.  
  2582.  
  2583. Data testData;
  2584. testData.generateData(inputSize, outputSize, type);
  2585. teacher.test(&testData, "print result");
  2586. cout << endl;
  2587.  
  2588. vector<int> hintOrder = teacher.topologicalSortOfSamples(&oldScripts);
  2589.  
  2590. Data newScripts;
  2591. newScripts.generateData(inputSize, outputSize, type, hintOrder);
  2592.  
  2593. net brain = net(inputSize, hiddenLayers, outputSize);
  2594. brain.train(&newScripts, "queue train");
  2595.  
  2596. hintOrder = brain.topologicalSortOfSamples(&newScripts);
  2597.  
  2598. brain.test(&testData, "print result");
  2599.  
  2600. return 0;
  2601. }
  2602.  
  2603. int main()
  2604. {
  2605. cout << "Meta Net" << endl << endl;
  2606. int t = 1;
  2607. while(t--)
  2608. {
  2609. work_meta_net();
  2610. //work_net();
  2611. }
  2612. cout << endl;
  2613. }
  2614.  
  2615. /*void splitEdges_out(int node_id)
  2616. {
  2617. if(net[node_id].size()==0)
  2618. {
  2619. return ;
  2620. }
  2621. vector<pair<int, int> > edges_out; //pair<int edge_w, edge_id>
  2622. for(int i=0;i<net[node_id].size();i++)
  2623. {
  2624. int edge_id = net[node_id][i];
  2625. edges_out.pb(mp(edges[edge_id].w, edge_id));
  2626. }
  2627. sort_v(edges_out);
  2628. vector<double> new_edge_w;
  2629. vector<vector<int> > split_edges;
  2630. vector<int> currentClass;
  2631.  
  2632. new_edge_w.pb(edges_out[0].f);
  2633. currentClass.pb(edges_out[0].s);
  2634. for(int i=1;i<edges_out.size();i++)
  2635. {
  2636. if(edges_out[i].f!=edges_out[i-1].f)
  2637. {
  2638. split_edges.pb(currentClass);
  2639. currentClass.clear();
  2640. new_edge_w.pb(edges_out[i].f);
  2641. currentClass.pb(edges_out[i].s);
  2642. }
  2643. else
  2644. {
  2645. currentClass.pb(edges_out[i].s);
  2646. }
  2647. }
  2648. split_edges.pb(currentClass);
  2649.  
  2650. if(split_edges.size()==edges_out.size() || split_edges.size() == 1)
  2651. {
  2652. return ;
  2653. }
  2654. vector<int> split_nodes_ids;
  2655. for(int i=0;i<split_edges.size();i++)
  2656. {
  2657. int newNode_id = initNode(computation("=="), origin(mp("if", i), node_id));
  2658. split_nodes_ids.pb(newNode_id);
  2659. for(int j=0;j<split_edges[i].size();j++)
  2660. {
  2661. int edge_id = split_edges[i][j];
  2662. updateEdge(edge_id, newNode_id, edges[edge_id].to, 1);
  2663. }
  2664. }
  2665. bool add_not = (new_edge_w.size()==2&&new_edge_w[0]==-new_edge_w[1]);
  2666. if(add_not)
  2667. {
  2668. nodes[split_nodes_ids[0]].not_id = split_nodes_ids[1];
  2669. nodes[split_nodes_ids[1]].not_id = split_nodes_ids[0];
  2670. }
  2671. //debug
  2672. //net[node_id].clear();
  2673. addEdges_out(node_id, split_nodes_ids, new_edge_w);
  2674. }
  2675. */
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement