Advertisement
Guest User

Untitled

a guest
Jul 3rd, 2012
48
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.37 KB | None | 0 0
  1. tree to process:
  2. root with
  3. C with values: vector=[2,4]
  4. kernel:"PowerKernel"
  5. degree with values: vector=[2,4]
  6. distance:"MinkowskiMetric"
  7. k with values: vector=[1,2]
  8. kernel:"GaussianKernel"
  9. width with values: vector=[2,4]
  10. kernel:"DistantSegmentsKernel"
  11. delta with values: vector=[2,4]
  12. theta with values: vector=[2,4]
  13.  
  14.  
  15. tree to process:
  16. root with
  17. kernel:"PowerKernel"
  18. distance:"MinkowskiMetric"
  19. k with values: vector=[2,3]
  20. kernel:"DistantSegmentsKernel"
  21.  
  22.  
  23. tree to process:
  24. root with
  25. kernel:"PowerKernel"
  26. distance:"MinkowskiMetric"
  27. distance:"EuclidianDistance"
  28. kernel:"DistantSegmentsKernel"
  29.  
  30.  
  31. tree to process:
  32. root with
  33. inference_method:"ExactInferenceMethod"
  34. likelihood_model:"GaussianLikelihood"
  35. kernel:"GaussianKernel"
  36. kernel:"PowerKernel"
  37. SVM:"LibSVM"
  38. kernel:"PowerKernel"
  39. kernel:"GaussianKernel"
  40.  
  41.  
  42. tree to process:
  43. root with
  44. C1 with values: vector=[2,4]
  45. inference_method:"ExactInferenceMethod"
  46. likelihood_model:"GaussianLikelihood"
  47. kernel:"GaussianKernel"
  48. kernel:"PowerKernel"
  49. SVM:"LibSVM"
  50. kernel:"PowerKernel"
  51. kernel:"GaussianKernel"
  52.  
  53.  
  54. tree to process:
  55. root with
  56. inference_method:"ExactInferenceMethod"
  57. likelihood_model:"GaussianLikelihood"
  58. sigma with values: vector=[4,8]
  59. kernel:"GaussianKernel"
  60. width with values: vector=[2,4]
  61. kernel:"LinearKernel"
  62. kernel:"PowerKernel"
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement