Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- tree to process:
- root with
- C with values: vector=[2,4]
- kernel:"PowerKernel"
- degree with values: vector=[2,4]
- distance:"MinkowskiMetric"
- k with values: vector=[1,2]
- kernel:"GaussianKernel"
- width with values: vector=[2,4]
- kernel:"DistantSegmentsKernel"
- delta with values: vector=[2,4]
- theta with values: vector=[2,4]
- tree to process:
- root with
- kernel:"PowerKernel"
- distance:"MinkowskiMetric"
- k with values: vector=[2,3]
- kernel:"DistantSegmentsKernel"
- tree to process:
- root with
- kernel:"PowerKernel"
- distance:"MinkowskiMetric"
- distance:"EuclidianDistance"
- kernel:"DistantSegmentsKernel"
- tree to process:
- root with
- inference_method:"ExactInferenceMethod"
- likelihood_model:"GaussianLikelihood"
- kernel:"GaussianKernel"
- kernel:"PowerKernel"
- SVM:"LibSVM"
- kernel:"PowerKernel"
- kernel:"GaussianKernel"
- tree to process:
- root with
- C1 with values: vector=[2,4]
- inference_method:"ExactInferenceMethod"
- likelihood_model:"GaussianLikelihood"
- kernel:"GaussianKernel"
- kernel:"PowerKernel"
- SVM:"LibSVM"
- kernel:"PowerKernel"
- kernel:"GaussianKernel"
- tree to process:
- root with
- inference_method:"ExactInferenceMethod"
- likelihood_model:"GaussianLikelihood"
- sigma with values: vector=[4,8]
- kernel:"GaussianKernel"
- width with values: vector=[2,4]
- kernel:"LinearKernel"
- kernel:"PowerKernel"
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement