Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import os
- import numpy as np
- from pandas.io.parsers import read_csv
- from sklearn.utils import shuffle
- from lasagne import layers
- from lasagne.updates import nesterov_momentum
- from nolearn.lasagne import NeuralNet
- def load(test=False, cols=None):
- fname = "path/to/train.csv"
- df = read_csv(os.path.expanduser(fname))
- df = df.dropna()
- X = np.array(np.vstack(df['Emotion'].values) , dtype=object)
- X = X.astype(np.chararray)
- df = df.drop('Emotion', 1)
- df = df.drop('Unnamed: 0', 1)
- y = np.array(df.values, dtype=object)
- y = y.astype(np.float32)
- return X, y
- net1 = NeuralNet(
- layers=[ # three layers: one hidden layer
- ('input', layers.InputLayer),
- ('hidden', layers.DenseLayer),
- ('output', layers.DenseLayer),
- ],
- # layer parameters:
- input_shape=(None,1196),
- hidden_num_units=100, # number of units in hidden layer
- output_nonlinearity=None, # output layer uses identity function
- output_num_units=49, # 30 target values
- # optimization method:
- update=nesterov_momentum,
- update_learning_rate=0.01,
- update_momentum=0.9,
- regression=True, # flag to indicate we're dealing with regression problem
- max_epochs=400, # we want to train this many epochs
- verbose=1,
- )
- X, y = load()
- net1.fit(X, y)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement