Advertisement
Kosty_Fomin

Untitled

May 14th, 2016
215
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.35 KB | None | 0 0
  1. import os
  2.  
  3. import numpy as np
  4. from pandas.io.parsers import read_csv
  5. from sklearn.utils import shuffle
  6.  
  7. from lasagne import layers
  8. from lasagne.updates import nesterov_momentum
  9. from nolearn.lasagne import NeuralNet
  10.  
  11. def load(test=False, cols=None):
  12.     fname = "path/to/train.csv"
  13.     df = read_csv(os.path.expanduser(fname))
  14.  
  15.  
  16.     df = df.dropna()  
  17.  
  18.     X = np.array(np.vstack(df['Emotion'].values) , dtype=object)
  19.     X = X.astype(np.chararray)
  20.  
  21.     df = df.drop('Emotion', 1)
  22.     df = df.drop('Unnamed: 0', 1)
  23.  
  24.     y = np.array(df.values, dtype=object)
  25.     y = y.astype(np.float32)
  26.  
  27.     return X, y
  28.  
  29. net1 = NeuralNet(
  30.     layers=[  # three layers: one hidden layer
  31.         ('input', layers.InputLayer),
  32.         ('hidden', layers.DenseLayer),
  33.         ('output', layers.DenseLayer),
  34.         ],
  35.     # layer parameters:
  36.     input_shape=(None,1196),  
  37.     hidden_num_units=100, # number of units in hidden layer
  38.     output_nonlinearity=None,  # output layer uses identity function
  39.     output_num_units=49,  # 30 target values
  40.  
  41.     # optimization method:
  42.     update=nesterov_momentum,
  43.     update_learning_rate=0.01,
  44.     update_momentum=0.9,
  45.  
  46.     regression=True,  # flag to indicate we're dealing with regression problem
  47.     max_epochs=400,  # we want to train this many epochs
  48.     verbose=1,
  49.     )
  50.  
  51. X, y = load()
  52.  
  53.  
  54. net1.fit(X, y)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement