Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
- %GRADIENTDESCENT Performs gradient descent to learn theta
- % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
- % taking num_iters gradient steps with learning rate alpha
- % Initialize some useful values
- m = length(y); % number of training examples
- J_history = zeros(num_iters, 1);
- grad=0
- for iter = 1:num_iters,
- % ====================== YOUR CODE HERE ======================
- % Instructions: Perform a single gradient step on the parameter vector
- % theta.
- %
- % Hint: While debugging, it can be useful to print out the values
- % of the cost function (computeCost) and gradient here.
- %
- for i = 1:m,
- grad = grad + (theta'*X(i,:)'-y(i))*X(i,:)';
- end
- theta = theta - (alpha/m)*grad;
- %grad = X' * (X*theta - y);
- %theta = theta - (alpha/m) * grad;
- % ============================================================
- % Save the cost J in every iteration
- J_history(iter) = computeCost(X, y, theta);
- end
- end
Advertisement
Add Comment
Please, Sign In to add comment