Guest User

Untitled

a guest
Jan 13th, 2016
83
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Bash 5.25 KB | None | 0 0
  1. Using gpu device 0: GRID K520 (CNMeM is disabled)
  2. using CUDNN backend
  3. {'aug_params': {'allow_stretch': True,
  4.                 'do_flip': True,
  5.                 'rotation_range': (0, 360),
  6.                 'shear_range': (0, 0),
  7.                 'translation_range': (-40, 40),
  8.                 'zoom_range': (0.8695652173913044, 1.15)},
  9.  'balance_ratio': 0.975,
  10.  'balance_weights': array([  1.36094537,  14.3782235 ,   6.63756614,  40.23596793,  49.61299435]),
  11.  'batch_size_test': 128,
  12.  'batch_size_train': 128,
  13.  'final_balance_weights': array([ 1.,  2.,  2.,  2.,  2.]),
  14.  'h': 112,
  15.  'name': 'c_128_5x5_32',
  16.  'schedule': {0: 0.003, 150: 0.0003, 201: 'stop'},
  17.  'sigma': 0.5,
  18.  'test_dir': 'data/test_tiny',
  19.  'train_dir': 'data/train_tiny',
  20.  'w': 112,
  21.  'weight_decay': 0.0005}
  22. (35126, 35126, 35126)
  23. /home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/lasagne/init.py:86: UserWarning: The uniform initializer no longer uses Glorot et al.'s approach to determine the bounds, but defaults to the range (-0.01, 0.01) instead. Please use the new GlorotUniform initializer to get the old behavior. GlorotUniform is now the default for all layers.
  24.  warnings.warn("The uniform initializer no longer uses Glorot et al.'s "
  25. /home/ubuntu/dataset/kaggle_diabetic/nn.py:147: UserWarning: lasagne.objectives.Objective is deprecated and will be removed for the first release of Lasagne. For alternatives, please see: http://lasagne.readthedocs.org/en/latest/modules/objectives.html
  26.  obj = objective(output_layer, **objective_params)
  27. /home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/lasagne/layers/helper.py:69: UserWarning: get_all_layers() has been changed to return layers in topological order. The former implementation is still available as get_all_layers_old(), but will be removed before the first release of Lasagne. To ignore this warning, use `warnings.filterwarnings('ignore', '.*topo.*')`.
  28.  warnings.warn("get_all_layers() has been changed to return layers in "
  29. /home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/lasagne/objectives.py:241: UserWarning: lasagne.objectives.mse() is deprecated and will be removed for the first release of Lasagne. Use lasagne.objectives.squared_error() instead.
  30.  losses = self.loss_function(network_output, target)
  31. couldn't load weights starting from scratch
  32. fitting ...
  33. data/train_tiny/40267_left.tiff
  34. # Neural Network with 1808481 learnable parameters
  35.  
  36. ## Layer information
  37.  
  38. name           size         total    cap.Y    cap.X    cov.Y    cov.X
  39. -------------  ---------  -------  -------  -------  -------  -------
  40. input0         3x112x112    37632   100.00   100.00   100.00   100.00
  41. conv2ddnn1     32x56x56    100352   100.00   100.00     4.46     4.46
  42. conv2ddnn2     32x56x56    100352    42.86    42.86     6.25     6.25
  43. maxpool2ddnn3  32x27x27     23328    42.86    42.86     6.25     6.25
  44. conv2ddnn4     64x14x14     12544    78.95    78.95    16.96    16.96
  45. conv2ddnn5     64x14x14     12544    36.00    36.00    22.32    22.32
  46. conv2ddnn6     64x14x14     12544    29.03    29.03    27.68    27.68
  47. maxpool2ddnn7  64x6x6        2304    29.03    29.03    27.68    27.68
  48. conv2ddnn8     128x6x6       4608    55.10    55.10    43.75    43.75
  49. conv2ddnn9     128x6x6       4608    40.30    40.30    59.82    59.82
  50. conv2ddnn10    128x6x6       4608    31.76    31.76    75.89    75.89
  51. rmspool11      128x2x2        512   100.00   100.00   100.00   100.00
  52. dropout12      128x2x2        512   100.00   100.00   100.00   100.00
  53. dense13        1024          1024   100.00   100.00   100.00   100.00
  54. featurepool14  512            512   100.00   100.00   100.00   100.00
  55. dropout15      512            512   100.00   100.00   100.00   100.00
  56. dense16        1024          1024   100.00   100.00   100.00   100.00
  57. featurepool17  512            512   100.00   100.00   100.00   100.00
  58. dense18        1                1   100.00   100.00   100.00   100.00
  59.  
  60. Explanation
  61.    X, Y:    image dimensions
  62.    cap.:    learning capacity
  63.    cov.:    coverage of image
  64.    magenta: capacity too low (<1/6)
  65.    cyan:    image coverage too high (>100%)
  66.    red:     capacity too low and coverage too high
  67.  
  68.  
  69. Traceback (most recent call last):
  70.  File "train_nn.py", line 41, in <module>
  71.    main()
  72.  File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 716, in __call__
  73.    return self.main(*args, **kwargs)
  74.  File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 696, in main
  75.    rv = self.invoke(ctx)
  76.  File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 889, in invoke
  77.    return ctx.invoke(self.callback, **ctx.params)
  78.  File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 534, in invoke
  79.    return callback(*args, **kwargs)
  80.  File "train_nn.py", line 38, in main
  81.    net.fit(files, labels)
  82.  File "/home/ubuntu/dataset/kaggle_diabetic/solution/src/nolearn-master/nolearn/lasagne/base.py", line 334, in fit
  83.    self.train_loop(X, y)
  84.  File "/home/ubuntu/dataset/kaggle_diabetic/nn.py", line 250, in train_loop
  85.    raise ValueError("non finite loss")
  86. ValueError: non finite loss
Add Comment
Please, Sign In to add comment