Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Using gpu device 0: GRID K520 (CNMeM is disabled)
- using CUDNN backend
- {'aug_params': {'allow_stretch': True,
- 'do_flip': True,
- 'rotation_range': (0, 360),
- 'shear_range': (0, 0),
- 'translation_range': (-40, 40),
- 'zoom_range': (0.8695652173913044, 1.15)},
- 'balance_ratio': 0.975,
- 'balance_weights': array([ 1.36094537, 14.3782235 , 6.63756614, 40.23596793, 49.61299435]),
- 'batch_size_test': 128,
- 'batch_size_train': 128,
- 'final_balance_weights': array([ 1., 2., 2., 2., 2.]),
- 'h': 112,
- 'name': 'c_128_5x5_32',
- 'schedule': {0: 0.003, 150: 0.0003, 201: 'stop'},
- 'sigma': 0.5,
- 'test_dir': 'data/test_tiny',
- 'train_dir': 'data/train_tiny',
- 'w': 112,
- 'weight_decay': 0.0005}
- (35126, 35126, 35126)
- /home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/lasagne/init.py:86: UserWarning: The uniform initializer no longer uses Glorot et al.'s approach to determine the bounds, but defaults to the range (-0.01, 0.01) instead. Please use the new GlorotUniform initializer to get the old behavior. GlorotUniform is now the default for all layers.
- warnings.warn("The uniform initializer no longer uses Glorot et al.'s "
- /home/ubuntu/dataset/kaggle_diabetic/nn.py:147: UserWarning: lasagne.objectives.Objective is deprecated and will be removed for the first release of Lasagne. For alternatives, please see: http://lasagne.readthedocs.org/en/latest/modules/objectives.html
- obj = objective(output_layer, **objective_params)
- /home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/lasagne/layers/helper.py:69: UserWarning: get_all_layers() has been changed to return layers in topological order. The former implementation is still available as get_all_layers_old(), but will be removed before the first release of Lasagne. To ignore this warning, use `warnings.filterwarnings('ignore', '.*topo.*')`.
- warnings.warn("get_all_layers() has been changed to return layers in "
- /home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/lasagne/objectives.py:241: UserWarning: lasagne.objectives.mse() is deprecated and will be removed for the first release of Lasagne. Use lasagne.objectives.squared_error() instead.
- losses = self.loss_function(network_output, target)
- couldn't load weights starting from scratch
- fitting ...
- data/train_tiny/40267_left.tiff
- # Neural Network with 1808481 learnable parameters
- ## Layer information
- name size total cap.Y cap.X cov.Y cov.X
- ------------- --------- ------- ------- ------- ------- -------
- input0 3x112x112 37632 100.00 100.00 100.00 100.00
- conv2ddnn1 32x56x56 100352 100.00 100.00 4.46 4.46
- conv2ddnn2 32x56x56 100352 42.86 42.86 6.25 6.25
- maxpool2ddnn3 32x27x27 23328 42.86 42.86 6.25 6.25
- conv2ddnn4 64x14x14 12544 78.95 78.95 16.96 16.96
- conv2ddnn5 64x14x14 12544 36.00 36.00 22.32 22.32
- conv2ddnn6 64x14x14 12544 29.03 29.03 27.68 27.68
- maxpool2ddnn7 64x6x6 2304 29.03 29.03 27.68 27.68
- conv2ddnn8 128x6x6 4608 55.10 55.10 43.75 43.75
- conv2ddnn9 128x6x6 4608 40.30 40.30 59.82 59.82
- conv2ddnn10 128x6x6 4608 31.76 31.76 75.89 75.89
- rmspool11 128x2x2 512 100.00 100.00 100.00 100.00
- dropout12 128x2x2 512 100.00 100.00 100.00 100.00
- dense13 1024 1024 100.00 100.00 100.00 100.00
- featurepool14 512 512 100.00 100.00 100.00 100.00
- dropout15 512 512 100.00 100.00 100.00 100.00
- dense16 1024 1024 100.00 100.00 100.00 100.00
- featurepool17 512 512 100.00 100.00 100.00 100.00
- dense18 1 1 100.00 100.00 100.00 100.00
- Explanation
- X, Y: image dimensions
- cap.: learning capacity
- cov.: coverage of image
- magenta: capacity too low (<1/6)
- cyan: image coverage too high (>100%)
- red: capacity too low and coverage too high
- Traceback (most recent call last):
- File "train_nn.py", line 41, in <module>
- main()
- File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 716, in __call__
- return self.main(*args, **kwargs)
- File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 696, in main
- rv = self.invoke(ctx)
- File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 889, in invoke
- return ctx.invoke(self.callback, **ctx.params)
- File "/home/ubuntu/dataset/kaggle_diabetic/solution/local/lib/python2.7/site-packages/click/core.py", line 534, in invoke
- return callback(*args, **kwargs)
- File "train_nn.py", line 38, in main
- net.fit(files, labels)
- File "/home/ubuntu/dataset/kaggle_diabetic/solution/src/nolearn-master/nolearn/lasagne/base.py", line 334, in fit
- self.train_loop(X, y)
- File "/home/ubuntu/dataset/kaggle_diabetic/nn.py", line 250, in train_loop
- raise ValueError("non finite loss")
- ValueError: non finite loss
Add Comment
Please, Sign In to add comment