Advertisement
MatsGranvik

Dirac comb

Jan 13th, 2013
398
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 5.17 KB | None | 0 0
  1. (*start*)
  2. (*Dirac comb Fourier series*)
  3. ListLinePlot[
  4. Table[Sum[Cos[x*(k)/NN*2*Pi], {k, 1, NN}], {x, 0, xmax, 0.1}],
  5. PlotRange -> {-4, NN + 1/2}]
  6. (*end*)
  7.  
  8.  
  9. (*Mathematica*)
  10. (*program start*)
  11. Clear[x, y, n, a, xmin, xmax, ymin, ymax, c]
  12. xmin = -3*Pi;
  13. xmax = +3*Pi;
  14. x = N[Range[xmin, xmax, 1/(50*Pi)], 90];
  15. y1 = Cos[x] - 1;
  16. y2 = Sin[y1];
  17. y3 = Sin[y1 + y2];
  18. y4 = Sin[y1 + y2 + y3];
  19. y5 = Sin[y1 + y2 + y3 + y4];
  20. y6 = Sin[y1 + y2 + y3 + y4 + y5];
  21. y7 = Sin[y1 + y2 + y3 + y4 + y5 + y6];
  22. y8 = Sin[y1 + y2 + y3 + y4 + y5 + y6 + y7];
  23. y9 = Sin[y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8];
  24. y10 = Sin[y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9];
  25. y11 = Sin[y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10];
  26. y12 = Sin[y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11];
  27. y = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12;
  28. Max[y]
  29. a = Table[{x[[n]], Pi + y[[n]]}, {n, 1, Length[x]}];
  30. a1 = Table[{x[[n]], Pi + y1[[n]]}, {n, 1, Length[x]}];
  31. a2 = Table[{x[[n]], Pi + y2[[n]] + y1[[n]]}, {n, 1, Length[x]}];
  32. a3 = Table[{x[[n]], Pi + y3[[n]] + y2[[n]] + y1[[n]]}, {n, 1,
  33. Length[x]}];
  34. a4 = Table[{x[[n]], Pi + y4[[n]] + y3[[n]] + y2[[n]] + y1[[n]]}, {n,
  35. 1, Length[x]}];
  36. a5 = Table[{x[[n]],
  37. Pi + y5[[n]] + y4[[n]] + y3[[n]] + y2[[n]] + y1[[n]]}, {n, 1,
  38. Length[x]}];
  39. a6 = Table[{x[[n]],
  40. Pi + y6[[n]] + y5[[n]] + y4[[n]] + y3[[n]] + y2[[n]] +
  41. y1[[n]]}, {n, 1, Length[x]}];
  42. a7 = Table[{x[[n]],
  43. Pi + y7[[n]] + y6[[n]] + y5[[n]] + y4[[n]] + y3[[n]] + y2[[n]] +
  44. y1[[n]]}, {n, 1, Length[x]}];
  45. a8 = Table[{x[[n]],
  46. Pi + y8[[n]] + y7[[n]] + y6[[n]] + y5[[n]] + y4[[n]] + y3[[n]] +
  47. y2[[n]] + y1[[n]]}, {n, 1, Length[x]}];
  48. a9 = Table[{x[[n]],
  49. Pi + y9[[n]] + y8[[n]] + y7[[n]] + y6[[n]] + y5[[n]] + y4[[n]] +
  50. y3[[n]] + y2[[n]] + y1[[n]]}, {n, 1, Length[x]}];
  51. a10 = Table[{x[[n]],
  52. Pi + y10[[n]] + y9[[n]] + y8[[n]] + y7[[n]] + y6[[n]] + y5[[n]] +
  53. y4[[n]] + y3[[n]] + y2[[n]] + y1[[n]]}, {n, 1, Length[x]}];
  54. a11 = Table[{x[[n]],
  55. Pi + y11[[n]] + y10[[n]] + y9[[n]] + y8[[n]] + y7[[n]] + y6[[n]] +
  56. y5[[n]] + y4[[n]] + y3[[n]] + y2[[n]] + y1[[n]]}, {n, 1,
  57. Length[x]}];
  58. a12 = Table[{x[[n]],
  59. Pi + y12[[n]] + y11[[n]] + y10[[n]] + y9[[n]] + y8[[n]] +
  60. y7[[n]] + y6[[n]] + y5[[n]] + y4[[n]] + y3[[n]] + y2[[n]] +
  61. y1[[n]]}, {n, 1, Length[x]}];
  62. ymin = Min[y]/Pi;
  63. ymax = Max[y]/Pi;
  64. ymin = -10/2*Pi;
  65. ymax = 10/2*Pi;
  66.  
  67. g = ListLinePlot[a,
  68. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  69. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  70. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  71. g1 = ListLinePlot[a1,
  72. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  73. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  74. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  75. g2 = ListLinePlot[a2,
  76. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  77. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  78. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  79. g3 = ListLinePlot[a3,
  80. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  81. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  82. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  83. g4 = ListLinePlot[a4,
  84. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  85. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  86. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  87. g5 = ListLinePlot[a5,
  88. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  89. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  90. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  91. g6 = ListLinePlot[a6,
  92. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  93. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  94. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  95. g7 = ListLinePlot[a7,
  96. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  97. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  98. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  99.  
  100. g8 = ListLinePlot[a8,
  101. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  102. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  103. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  104.  
  105. g9 = ListLinePlot[a9,
  106. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  107. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  108. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  109.  
  110. g10 = ListLinePlot[a10,
  111. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  112. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  113. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  114.  
  115. g11 = ListLinePlot[a11,
  116. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  117. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  118. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  119.  
  120. g12 = ListLinePlot[a12,
  121. Ticks -> {Flatten[{xmin, xmax, Table[n, {n, xmin, xmax, Pi}]}],
  122. Flatten[{ymin, ymax, Table[k, {k, ymin, ymax, Pi}]}]},
  123. ImageSize -> Full, PlotRange -> {-1/2, Pi + 1/2}];
  124.  
  125. Show[g, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12]
  126. Show[g10]
  127. (*program end*)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement