Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import java.awt.Graphics2D;
- import java.awt.color.ColorSpace;
- import java.awt.image.BufferedImage;
- import java.awt.image.ColorConvertOp;
- import java.io.InputStream;
- import javax.imageio.ImageIO;
- /*
- * pHash-like image hash.
- * Author: Elliot Shepherd (elliot@jarofworms.com
- * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
- */
- public class ImagePHash {
- private int size = 32;
- private int smallerSize = 8;
- public ImagePHash() {
- initCoefficients();
- }
- public ImagePHash(int size, int smallerSize) {
- this.size = size;
- this.smallerSize = smallerSize;
- initCoefficients();
- }
- public int distance(String s1, String s2) {
- int counter = 0;
- for (int k = 0; k < s1.length();k++) {
- if(s1.charAt(k) != s2.charAt(k)) {
- counter++;
- }
- }
- return counter;
- }
- // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on.
- public String getHash(InputStream is) throws Exception {
- BufferedImage img = ImageIO.read(is);
- /* 1. Reduce size.
- * Like Average Hash, pHash starts with a small image.
- * However, the image is larger than 8x8; 32x32 is a good size.
- * This is really done to simplify the DCT computation and not
- * because it is needed to reduce the high frequencies.
- */
- img = resize(img, size, size);
- /* 2. Reduce color.
- * The image is reduced to a grayscale just to further simplify
- * the number of computations.
- */
- img = grayscale(img);
- double[][] vals = new double[size][size];
- for (int x = 0; x < img.getWidth(); x++) {
- for (int y = 0; y < img.getHeight(); y++) {
- vals[x][y] = getBlue(img, x, y);
- }
- }
- /* 3. Compute the DCT.
- * The DCT separates the image into a collection of frequencies
- * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses
- * a 32x32 DCT.
- */
- long start = System.currentTimeMillis();
- double[][] dctVals = applyDCT(vals);
- System.out.println("DCT: " + (System.currentTimeMillis() - start));
- /* 4. Reduce the DCT.
- * This is the magic step. While the DCT is 32x32, just keep the
- * top-left 8x8. Those represent the lowest frequencies in the
- * picture.
- */
- /* 5. Compute the average value.
- * Like the Average Hash, compute the mean DCT value (using only
- * the 8x8 DCT low-frequency values and excluding the first term
- * since the DC coefficient can be significantly different from
- * the other values and will throw off the average).
- */
- double total = 0;
- for (int x = 0; x < smallerSize; x++) {
- for (int y = 0; y < smallerSize; y++) {
- total += dctVals[x][y];
- }
- }
- total -= dctVals[0][0];
- double avg = total / (double) ((smallerSize * smallerSize) - 1);
- /* 6. Further reduce the DCT.
- * This is the magic step. Set the 64 hash bits to 0 or 1
- * depending on whether each of the 64 DCT values is above or
- * below the average value. The result doesn't tell us the
- * actual low frequencies; it just tells us the very-rough
- * relative scale of the frequencies to the mean. The result
- * will not vary as long as the overall structure of the image
- * remains the same; this can survive gamma and color histogram
- * adjustments without a problem.
- */
- String hash = "";
- for (int x = 0; x < smallerSize; x++) {
- for (int y = 0; y < smallerSize; y++) {
- if (x != 0 && y != 0) {
- hash += (dctVals[x][y] > avg?"1":"0");
- }
- }
- }
- return hash;
- }
- private BufferedImage resize(BufferedImage image, int width, int height) {
- BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
- Graphics2D g = resizedImage.createGraphics();
- g.drawImage(image, 0, 0, width, height, null);
- g.dispose();
- return resizedImage;
- }
- private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
- private BufferedImage grayscale(BufferedImage img) {
- colorConvert.filter(img, img);
- return img;
- }
- private static int getBlue(BufferedImage img, int x, int y) {
- return (img.getRGB(x, y)) & 0xff;
- }
- // DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java
- private double[] c;
- private void initCoefficients() {
- c = new double[size];
- for (int i=1;i<size;i++) {
- c[i]=1;
- }
- c[0]=1/Math.sqrt(2.0);
- }
- private double[][] applyDCT(double[][] f) {
- int N = size;
- double[][] F = new double[N][N];
- for (int u=0;u<N;u++) {
- for (int v=0;v<N;v++) {
- double sum = 0.0;
- for (int i=0;i<N;i++) {
- for (int j=0;j<N;j++) {
- sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]);
- }
- }
- sum*=((c[u]*c[v])/4.0);
- F[u][v] = sum;
- }
- }
- return F;
- }
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement