Advertisement
Guest User

pHash-like image hash for java

a guest
Sep 13th, 2011
15,748
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Java 5.01 KB | None | 0 0
  1. import java.awt.Graphics2D;
  2. import java.awt.color.ColorSpace;
  3. import java.awt.image.BufferedImage;
  4. import java.awt.image.ColorConvertOp;
  5. import java.io.InputStream;
  6.  
  7. import javax.imageio.ImageIO;
  8. /*
  9.  * pHash-like image hash.
  10.  * Author: Elliot Shepherd (elliot@jarofworms.com
  11.  * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
  12.  */
  13. public class ImagePHash {
  14.  
  15.     private int size = 32;
  16.     private int smallerSize = 8;
  17.    
  18.     public ImagePHash() {
  19.         initCoefficients();
  20.     }
  21.    
  22.     public ImagePHash(int size, int smallerSize) {
  23.         this.size = size;
  24.         this.smallerSize = smallerSize;
  25.        
  26.         initCoefficients();
  27.     }
  28.    
  29.     public int distance(String s1, String s2) {
  30.         int counter = 0;
  31.         for (int k = 0; k < s1.length();k++) {
  32.             if(s1.charAt(k) != s2.charAt(k)) {
  33.                 counter++;
  34.             }
  35.         }
  36.         return counter;
  37.     }
  38.    
  39.     // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on.
  40.     public String getHash(InputStream is) throws Exception {
  41.         BufferedImage img = ImageIO.read(is);
  42.        
  43.         /* 1. Reduce size.
  44.          * Like Average Hash, pHash starts with a small image.
  45.          * However, the image is larger than 8x8; 32x32 is a good size.
  46.          * This is really done to simplify the DCT computation and not
  47.          * because it is needed to reduce the high frequencies.
  48.          */
  49.         img = resize(img, size, size);
  50.        
  51.         /* 2. Reduce color.
  52.          * The image is reduced to a grayscale just to further simplify
  53.          * the number of computations.
  54.          */
  55.         img = grayscale(img);
  56.        
  57.         double[][] vals = new double[size][size];
  58.        
  59.         for (int x = 0; x < img.getWidth(); x++) {
  60.             for (int y = 0; y < img.getHeight(); y++) {
  61.                 vals[x][y] = getBlue(img, x, y);
  62.             }
  63.         }
  64.        
  65.         /* 3. Compute the DCT.
  66.          * The DCT separates the image into a collection of frequencies
  67.          * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses
  68.          * a 32x32 DCT.
  69.          */
  70.         long start = System.currentTimeMillis();
  71.         double[][] dctVals = applyDCT(vals);
  72.         System.out.println("DCT: " + (System.currentTimeMillis() - start));
  73.        
  74.         /* 4. Reduce the DCT.
  75.          * This is the magic step. While the DCT is 32x32, just keep the
  76.          * top-left 8x8. Those represent the lowest frequencies in the
  77.          * picture.
  78.          */
  79.         /* 5. Compute the average value.
  80.          * Like the Average Hash, compute the mean DCT value (using only
  81.          * the 8x8 DCT low-frequency values and excluding the first term
  82.          * since the DC coefficient can be significantly different from
  83.          * the other values and will throw off the average).
  84.          */
  85.         double total = 0;
  86.        
  87.         for (int x = 0; x < smallerSize; x++) {
  88.             for (int y = 0; y < smallerSize; y++) {
  89.                 total += dctVals[x][y];
  90.             }
  91.         }
  92.         total -= dctVals[0][0];
  93.        
  94.         double avg = total / (double) ((smallerSize * smallerSize) - 1);
  95.    
  96.         /* 6. Further reduce the DCT.
  97.          * This is the magic step. Set the 64 hash bits to 0 or 1
  98.          * depending on whether each of the 64 DCT values is above or
  99.          * below the average value. The result doesn't tell us the
  100.          * actual low frequencies; it just tells us the very-rough
  101.          * relative scale of the frequencies to the mean. The result
  102.          * will not vary as long as the overall structure of the image
  103.          * remains the same; this can survive gamma and color histogram
  104.          * adjustments without a problem.
  105.          */
  106.         String hash = "";
  107.        
  108.         for (int x = 0; x < smallerSize; x++) {
  109.             for (int y = 0; y < smallerSize; y++) {
  110.                 if (x != 0 && y != 0) {
  111.                     hash += (dctVals[x][y] > avg?"1":"0");
  112.                 }
  113.             }
  114.         }
  115.        
  116.         return hash;
  117.     }
  118.    
  119.     private BufferedImage resize(BufferedImage image, int width,    int height) {
  120.         BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
  121.         Graphics2D g = resizedImage.createGraphics();
  122.         g.drawImage(image, 0, 0, width, height, null);
  123.         g.dispose();
  124.         return resizedImage;
  125.     }
  126.    
  127.     private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
  128.  
  129.     private BufferedImage grayscale(BufferedImage img) {
  130.         colorConvert.filter(img, img);
  131.         return img;
  132.     }
  133.    
  134.     private static int getBlue(BufferedImage img, int x, int y) {
  135.         return (img.getRGB(x, y)) & 0xff;
  136.     }
  137.    
  138.     // DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java
  139.  
  140.     private double[] c;
  141.     private void initCoefficients() {
  142.         c = new double[size];
  143.        
  144.         for (int i=1;i<size;i++) {
  145.             c[i]=1;
  146.         }
  147.         c[0]=1/Math.sqrt(2.0);
  148.     }
  149.    
  150.     private double[][] applyDCT(double[][] f) {
  151.         int N = size;
  152.        
  153.         double[][] F = new double[N][N];
  154.         for (int u=0;u<N;u++) {
  155.           for (int v=0;v<N;v++) {
  156.             double sum = 0.0;
  157.             for (int i=0;i<N;i++) {
  158.               for (int j=0;j<N;j++) {
  159.                 sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]);
  160.               }
  161.             }
  162.             sum*=((c[u]*c[v])/4.0);
  163.             F[u][v] = sum;
  164.           }
  165.         }
  166.         return F;
  167.     }
  168.  
  169. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement