Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Summary of the Decision Tree model for Classification (built using 'rpart'):
- n=11227 (7033 observations deleted due to missingness)
- node), split, n, loss, yval, (yprob)
- * denotes terminal node
- 1) root 11227 6643 I'm somewhat satisfied with my job (0.019 0.36 0.11 0.098 0.41)
- 2) Remote.Status=Full-time Remote,I rarely work remote,Part-time Remote 8600 5102 I'm somewhat satisfied with my job (0.015 0.39 0.1 0.085 0.41)
- 4) CompRecode>=1.5 5532 3224 I'm somewhat satisfied with my job (0.015 0.39 0.088 0.087 0.42)
- 8) CompRecode>=4.5 2153 1210 I love my job (0.016 0.44 0.072 0.077 0.4) *
- 9) CompRecode< 4.5 3379 1927 I'm somewhat satisfied with my job (0.015 0.36 0.099 0.094 0.43) *
- 5) CompRecode< 1.5 1429 856 I'm somewhat satisfied with my job (0.014 0.33 0.17 0.09 0.4) *
- 3) Remote.Status=Never 2575 1514 I'm somewhat satisfied with my job (0.031 0.27 0.14 0.14 0.41)
- 6) CompRecode>=2.5 954 546 I'm somewhat satisfied with my job (0.041 0.27 0.12 0.14 0.43) *
- 7) CompRecode< 2.5 1098 663 I'm somewhat satisfied with my job (0.028 0.23 0.17 0.17 0.4) *
- Classification tree:
- rpart(formula = Job.Satisfaction ~ ., data = crs$dataset[crs$train,
- c(crs$input, crs$target)], method = "class", parms = list(split = "information"),
- control = rpart.control(usesurrogate = 0, maxsurrogate = 0))
- Variables actually used in tree construction:
- [1] CompRecode Remote.Status
- Root node error: 6643/11227 = 0.5917
- n=11227 (7033 observations deleted due to missingness)
- CP nsplit rel error
- 1 0.078955 0 1.00000
- 2 0.045913 2 0.84209
- 3 0.013096 3 0.79618
- 4 0.010000 4 0.78308
- xerror xstd
- 1 1.00000 0.0078399
- 2 0.99985 0.0078401
- 3 0.99714 0.0078448
- 4 0.99518 0.0078482
- Time taken: 0.24 secs
- Rattle timestamp: 2015-06-07 17:56:34
- ======================================================================
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement