Guest User

Untitled

a guest
Dec 7th, 2016
280
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 25.48 KB | None | 0 0
  1. % Encoding: UTF-8
  2.  
  3. @Article{Shamsaei2015,
  4.  author    = {Shamsaei, Nima and Yadollahi, Aref and Bian, Linkan and Thompson, Scott M},
  5.  title     = {An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control},
  6.  journal   = {Additive Manufacturing},
  7.  year      = {2015},
  8.  volume    = {8},
  9.  pages     = {12--35},
  10.  publisher = {Elsevier},
  11. }
  12.  
  13. @Article{Senkov2010,
  14.  author    = {Senkov, ON and Wilks, GB and Miracle, DB and Chuang, CP and Liaw, PK},
  15.  title     = {Refractory high-entropy alloys},
  16.  journal   = {Intermetallics},
  17.  year      = {2010},
  18.  volume    = {18},
  19.  number    = {9},
  20.  pages     = {1758--1765},
  21.  publisher = {Elsevier},
  22. }
  23.  
  24. @Article{Frazier2014,
  25.  author   = {Frazier, William E.},
  26.  title    = {Metal Additive Manufacturing: A Review},
  27.  journal  = {Journal of Materials Engineering and Performance},
  28.  year     = {2014},
  29.  volume   = {23},
  30.  number   = {6},
  31.  pages    = {1917--1928},
  32.  abstract = {This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.},
  33.  doi      = {10.1007/s11665-014-0958-z},
  34.  issn     = {1544-1024},
  35.  url      = {http://dx.doi.org/10.1007/s11665-014-0958-z},
  36. }
  37.  
  38. @Misc{MarcelSchneider1998,
  39.  author   = {Marcel Schneider, Dr. Ir. J. Meijer},
  40.  title    = {Laser Cladding With Powder: effect of some machining parameters on clad properties},
  41.  year     = {1998},
  42.  abstract = {ardness, bonding and microstructure. Hence, it was decided to introduce this technique in the Dutch industry.  The project consisted of three parts. One part covered the achievement and enhancement of insight in phenomena that occur in laser cladding. The second part involved the development of tools that facilitate the use of laser cladding. The third part consisted of the development of practical applications. Some aspects of this project are discussed in this thesis.  This thesis is directed to laser cladding with powder and a CO 2 laser as heat source. The laser beam intensity profile turned out to be an important pa- 6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is attained with an arbitrarily shaped intensity profile. Input parameters for this model are laser machining parameters and properties of the laser beam, as well as material properties and the absorption of laser energy at the s},
  43. }
  44.  
  45. @Article{Gu2012,
  46.  author    = {Gu, DD and Meiners, W and Wissenbach, K and Poprawe, R},
  47.  title     = {Laser additive manufacturing of metallic components: materials, processes and mechanisms},
  48.  journal   = {International materials reviews},
  49.  year      = {2012},
  50.  volume    = {57},
  51.  number    = {3},
  52.  pages     = {133--164},
  53.  publisher = {Taylor \& Francis},
  54. }
  55.  
  56. @Misc{Housholder1981,
  57.  author    = {Housholder, R.F.},
  58.  title     = {Molding process},
  59.  month     = jan #{~27},
  60.  year      = {1981},
  61.  note      = {US Patent 4,247,508},
  62.  publisher = {Google Patents},
  63.  url       = {https://www.google.com/patents/US4247508},
  64. }
  65.  
  66. @Misc{Brown1982,
  67.  author    = {Brown, C.O. and Breinan, E.M. and Kear, B.H.},
  68.  title     = {Method for fabricating articles by sequential layer deposition},
  69.  month     = apr #{~6},
  70.  year      = {1982},
  71.  note      = {US Patent 4,323,756},
  72.  publisher = {Google Patents},
  73.  url       = {https://www.google.com/patents/US4323756},
  74. }
  75.  
  76. @Misc{Standard,
  77.  author = {Standard, ASTM},
  78.  title  = {F2792-12a (2012) Standard terminology for additive manufacturing technologies, ASTM International, West Conshohocken, PA, doi: 10.1520/F2792-12A},
  79. }
  80.  
  81. @Article{Thompson2015,
  82.  author   = {Scott M. Thompson and Linkan Bian and Nima Shamsaei and Aref YadollahiSingle-crystal laser deposition of superalloys},
  83.  title    = {An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics},
  84.  journal  = {Additive Manufacturing},
  85.  year     = {2015},
  86.  volume   = {8},
  87.  pages    = {36 - 62},
  88.  abstract = {Abstract Laser-based additive manufacturing (LBAM) processes can be utilized to generate functional parts (or prototypes) from the ground-up via layer-wise cladding – providing an opportunity to generate complex-shaped, functionally graded or custom-tailored parts that can be utilized for a variety of engineering applications. Directed Energy Deposition (DED), utilizes a concentrated heat source, which may be a laser or electron beam, with in situ delivery of powder- or wire-shaped material for subsequent melting to accomplish layer-by-layer part fabrication or single-to-multi layer cladding/repair. Direct Laser Deposition (DLD), a form of DED, has been investigated heavily in the last several years as it provides the potential to (i) rapidly prototype metallic parts, (ii) produce complex and customized parts, (iii) clad/repair precious metallic components and (iv) manufacture/repair in remote or logistically weak locations. \{DLD\} and Powder Bed Fusion-Laser (PBF-L) are two common \{LBAM\} processes for additive metal part fabrication and are currently demonstrating their ability to revolutionize the manufacturing industry; breaking barriers imposed via traditional, ‘subtractive’ metalworking processes. This article provides an overview of the major advancements, challenges and physical attributes related to DLD, and is one of two Parts focused specifically on DLD. Part I (this article) focuses on describing the thermal/fluidic phenomena during the powder-fed \{DLD\} process, while Part \{II\} focuses on the mechanical properties and microstructure of parts manufactured via DLD. In this current article, a selection of recent research efforts – including methodology, models and experimental results – will be provided in order to educate the reader of the thermal/fluidic processes that occur during DLD, as well as providing important background information relevant to \{DLD\} as a whole. The thermal/fluid phenomena inherent to \{DLD\} directly influence the solidification heat transfer which thus impacts the part's microstructure and associated thermo-mechanical properties. A thorough understanding of the thermal/fluid aspects inherent to \{DLD\} is vital for optimizing the \{DLD\} process and ensuring consistent, high-quality parts. },
  89.  doi      = {http://dx.doi.org/10.1016/j.addma.2015.07.001},
  90.  issn     = {2214-8604},
  91.  keywords = {Direct Laser Deposition (DLD), Additive manufacturing (AM), Heat transfer, Thermal monitoring, Melt pool },
  92.  url      = {http://www.sciencedirect.com/science/article/pii/S2214860415000317},
  93. }
  94.  
  95. @Article{Kahlen2001,
  96.  author    = {Kahlen, Franz-Josef and Kar, Aravinda},
  97.  title     = {Tensile strengths for laser-fabricated parts and similarity parameters for rapid manufacturing},
  98.  journal   = {Journal of manufacturing science and engineering},
  99.  year      = {2001},
  100.  volume    = {123},
  101.  number    = {1},
  102.  pages     = {38--44},
  103.  keywords  = {Theory, DLD, Dimensions},
  104.  publisher = {American Society of Mechanical Engineers},
  105. }
  106.  
  107. @Article{Wang2007,
  108.  author   = {F. Wang and J. Mei and Xinhua Wu},
  109.  title    = {Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire},
  110.  journal  = {Materials \& Design},
  111.  year     = {2007},
  112.  volume   = {28},
  113.  number   = {7},
  114.  pages    = {2040 - 2046},
  115.   abstract = {Ti6Al4V reinforced with TiC has been fabricated as compositionally graded material by direct laser fabrication using TiC powder and Ti6Al4V wire which were fed simultaneously into the laser focal point. The microstructure along the length of the sample has been characterised using X-ray diffraction and scanning electron microscopy. The results show that the composition along the length changes as expected from the imposed changes in feed rate when allowance is made for the different capture efficiency for the powder and the wire. Some unmelted TiC has been observed in regions where the TiC fraction was high, but along most of the length of the samples TiC was completely melted and formed primary TiC, eutectic TiC and secondary TiC. Some preliminary tribological properties of the compositionally graded material were obtained using a sliding wear test which showed that the tribological properties of Ti6Al4V are improved by the reinforced TiC particles with the optimum frictional behaviour being found with approximately 24 vol% of TiC. },
  116.   doi      = {http://dx.doi.org/10.1016/j.matdes.2006.06.010},
  117.  issn     = {0261-3069},
  118.  keywords = {Direct laser fabrication, Functionally graded materials, TiC-reinforced titanium alloys },
  119.  url      = {http://www.sciencedirect.com/science/article/pii/S0261306906001920},
  120. }
  121.  
  122. @Article{Heralic2012,
  123.  author   = {Almir Heralić and Anna-Karin Christiansson and Bengt Lennartson},
  124.  title    = {Height control of laser metal-wire deposition based on iterative learning control and 3D scanning},
  125.  journal  = {Optics and Lasers in Engineering},
  126.  year     = {2012},
  127.  volume   = {50},
  128.  number   = {9},
  129.  pages    = {1230 - 1241},
  130.  abstract = {Laser Metal-wire Deposition is an additive manufacturing technique for solid freeform fabrication of fully dense metal structures. The technique is based on robotized laser welding and wire filler material, and the structures are built up layer by layer. The deposition process is, however, sensitive to disturbances and thus requires continuous monitoring and adjustments. In this work a 3D scanning system is developed and integrated with the robot control system for automatic in-process control of the deposition. The goal is to ensure stable deposition, by means of choosing a correct offset of the robot in the vertical direction, and obtaining a flat surface, for each deposited layer. The deviations in the layer height are compensated by controlling the wire feed rate on next deposition layer, based on the 3D scanned data, by means of iterative learning control. The system is tested through deposition of bosses, which is expected to be a typical application for this technique in the manufacture of jet engine components. The results show that iterative learning control including 3D scanning is a suitable method for automatic deposition of such structures. This paper presents the equipment, the control strategy and demonstrates the proposed approach with practical experiments. },
  131.  doi      = {http://dx.doi.org/10.1016/j.optlaseng.2012.03.016},
  132.  issn     = {0143-8166},
  133.  keywords = {Laser metal deposition, Additive layer manufacturing, Metal wire, Iterative learning control, 3D scanning },
  134.  url      = {http://www.sciencedirect.com/science/article/pii/S0143816612001017},
  135. }
  136.  
  137. @Article{Karunakaran2012,
  138.  author    = {Karunakaran, KP and Bernard, Alain and Suryakumar, S and Dembinski, Lucas and Taillandier, Georges},
  139.  title     = {Rapid manufacturing of metallic objects},
  140.  journal   = {Rapid Prototyping Journal},
  141.  year      = {2012},
  142.  volume    = {18},
  143.  number    = {4},
  144.  pages     = {264--280},
  145.  publisher = {Emerald Group Publishing Limited},
  146. }
  147.  
  148. @Article{Davis2003,
  149.  author  = {Davis, Troy Austin},
  150.  title   = {The Effect of Process Parameters on Laser Deposited Ti-6Al-4V},
  151.  journal = {Eng thesis, University of Louisville},
  152.  year    = {2003},
  153. }
  154.  
  155. @Misc{Jeantette2000,
  156.  author    = {Jeantette, F.P. and Keicher, D.M. and Romero, J.A. and Schanwald, L.P.},
  157.  title     = {Method and system for producing complex-shape objects},
  158.  month     = apr #{~4},
  159.  year      = {2000},
  160.  note      = {US Patent 6046426},
  161.  keywords  = {Theory, DLD},
  162.  publisher = {Google Patents},
  163.  url       = {https://www.google.com/patents/US6046426},
  164. }
  165.  
  166. @Article{He2007,
  167.  author    = {He, X and Mazumder, J},
  168.  title     = {Transport phenomena during direct metal deposition},
  169.  journal   = {Journal of Applied Physics},
  170.  year      = {2007},
  171.  volume    = {101},
  172.  number    = {5},
  173.  pages     = {053113},
  174.  publisher = {AIP Publishing},
  175. }
  176.  
  177. @Book{Davis2000,
  178.  title     = {Nickel, cobalt, and their alloys},
  179.  publisher = {ASM international},
  180.  year      = {2000},
  181.  author    = {Davis, Joseph R and others},
  182. }
  183.  
  184. @Article{Pinkerton2004,
  185.  author    = {Pinkerton, Andrew J and Li, Lin},
  186.  title     = {Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances},
  187.  journal   = {Journal of Physics D: Applied Physics},
  188.  year      = {2004},
  189.  volume    = {37},
  190.  number    = {14},
  191.  pages     = {1885},
  192.  publisher = {IOP Publishing},
  193. }
  194.  
  195. @Article{Steen2003,
  196.  author    = {Steen, WM},
  197.  title     = {Laser material processing—an overview},
  198.  journal   = {Journal of Optics A: Pure and Applied Optics},
  199.  year      = {2003},
  200.  volume    = {5},
  201.  number    = {4},
  202.  pages     = {S3},
  203.  publisher = {IOP Publishing},
  204. }
  205.  
  206. @Article{Qi2006,
  207.  author    = {Qi, Huan and Mazumder, Jyotirmoy and Ki, Hyungson},
  208.  title     = {Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition},
  209.  journal   = {Journal of applied physics},
  210.  year      = {2006},
  211.  volume    = {100},
  212.  number    = {2},
  213.  pages     = {024903},
  214.  publisher = {AIP Publishing},
  215. }
  216.  
  217. @Article{Simchi2006,
  218.  author    = {Simchi, A},
  219.  title     = {Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features},
  220.  journal   = {Materials Science and Engineering: A},
  221.  year      = {2006},
  222.  volume    = {428},
  223.  number    = {1},
  224.  pages     = {148--158},
  225.  publisher = {Elsevier},
  226. }
  227.  
  228. @Article{Peyre2008,
  229.  author    = {Peyre, P and Aubry, P and Fabbro, R and Neveu, R and Longuet, Arnaud},
  230.  title     = {Analytical and numerical modelling of the direct metal deposition laser process},
  231.  journal   = {Journal of Physics D: Applied Physics},
  232.  year      = {2008},
  233.  volume    = {41},
  234.  number    = {2},
  235.  pages     = {025403},
  236.  publisher = {IOP Publishing},
  237. }
  238.  
  239. @Article{Han2005,
  240.  author    = {Han, Lijun and Liou, Frank W and Musti, Srinivas},
  241.  title     = {Thermal behavior and geometry model of melt pool in laser material process},
  242.  journal   = {Journal of Heat Transfer},
  243.  year      = {2005},
  244.  volume    = {127},
  245.  number    = {9},
  246.  pages     = {1005--1014},
  247.  file      = {:C\:\\Users\\David\\Desktop\\Uni\\MA\\Literature\\ModellingDLD_Han2005.pdf:PDF},
  248.  publisher = {American Society of Mechanical Engineers},
  249. }
  250.  
  251. @Article{Alimardani2007,
  252.  author    = {Alimardani, Masoud and Toyserkani, Ehsan and Huissoon, Jan P},
  253.  title     = {Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process},
  254.  journal   = {Journal of laser applications},
  255.  year      = {2007},
  256.  volume    = {19},
  257.  number    = {1},
  258.  pages     = {14--25},
  259.  publisher = {Laser Institute of America},
  260. }
  261.  
  262. @InProceedings{Griffith1996,
  263.  author       = {Griffith, ML and Keicher, DM and Atwood, CL and Romero, JA and Smugeresky, JE and Harwell, LD and Greene, DL},
  264.  title        = {Free form fabrication of metallic components using laser engineered net shaping (LENS)},
  265.  booktitle    = {Proceedings of the Solid Freeform Fabrication Symposium},
  266.  year         = {1996},
  267.  pages        = {125--131},
  268.  organization = {University of Texas at Austin Austin, TX},
  269. }
  270.  
  271. @Article{Kummailil2005,
  272.  author    = {Kummailil, John and Sammarco, Carmine and Skinner, David and Brown, Christopher A and Rong, Kevin},
  273.  title     = {Effect of select LENS™ processing parameters on the deposition of Ti-6Al-4V},
  274.  journal   = {Journal of manufacturing processes},
  275.  year      = {2005},
  276.  volume    = {7},
  277.  number    = {1},
  278.  pages     = {42--50},
  279.  publisher = {Elsevier},
  280. }
  281.  
  282. @Article{Wang2009,
  283.  author    = {Wang, Liang and Felicelli, Sergio D and Craig, James E},
  284.  title     = {Experimental and numerical study of the LENS rapid fabrication process},
  285.  journal   = {Journal of Manufacturing Science and Engineering},
  286.  year      = {2009},
  287.  volume    = {131},
  288.  number    = {4},
  289.  pages     = {041019},
  290.  publisher = {American Society of Mechanical Engineers},
  291. }
  292.  
  293. @Article{Tang2010,
  294.  author    = {Tang, Lie and Landers, Robert G},
  295.  title     = {Melt Pool Temperature Control for Laser Metal Deposition Processes—Part II: Layer-to-Layer Temperature Control},
  296.  journal   = {Journal of manufacturing science and engineering},
  297.  year      = {2010},
  298.  volume    = {132},
  299.  number    = {1},
  300.  pages     = {011011},
  301.  publisher = {American Society of Mechanical Engineers},
  302. }
  303.  
  304. @Article{Raghavan2013,
  305.  author    = {Raghavan, A and Wei, HL and Palmer, TA and DebRoy, T},
  306.  title     = {Heat transfer and fluid flow in additive manufacturing},
  307.  journal   = {Journal of Laser Applications},
  308.  year      = {2013},
  309.  volume    = {25},
  310.  number    = {5},
  311.  pages     = {052006},
  312.  publisher = {Laser Institute of America},
  313. }
  314.  
  315. @Article{Griffith,
  316.  author  = {Griffith, Michelle L and Harwell, Lane D and Romero, J Tony and Schlienger, Eric and Atwood, Clint L and Smugeresky, J},
  317.  title   = {Multi-material processing by LENSTM},
  318.  journal = {Proceedings of Solid Free-form Fabrication, Austin (August 1997)},
  319. }
  320.  
  321. @Article{Gaeumann2001,
  322.  author    = {G{\"a}umann, M and Bezencon, C and Canalis, P and Kurz, W},
  323.  title     = {Single-crystal laser deposition of superalloys: processing--microstructure maps},
  324.  journal   = {Acta Materialia},
  325.  year      = {2001},
  326.  volume    = {49},
  327.  number    = {6},
  328.  pages     = {1051--1062},
  329.  publisher = {Elsevier},
  330. }
  331.  
  332. @Article{Griffith1999,
  333.  author    = {Griffith, ML and Schlienger, ME and Harwell, LD and Oliver, MS and Baldwin, MD and Ensz, MT and Essien, M and Brooks, J and Robino, CV and Smugeresky, etal JE and others},
  334.  title     = {Understanding thermal behavior in the LENS process},
  335.  journal   = {Materials \& design},
  336.  year      = {1999},
  337.  volume    = {20},
  338.  number    = {2},
  339.  pages     = {107--113},
  340.  publisher = {Elsevier},
  341. }
  342.  
  343. @Article{Paul2014,
  344.  author    = {Paul, Ratnadeep and Anand, Sam and Gerner, Frank},
  345.  title     = {Effect of thermal deformation on part errors in metal powder based additive manufacturing processes},
  346.  journal   = {Journal of Manufacturing Science and Engineering},
  347.  year      = {2014},
  348.  volume    = {136},
  349.  number    = {3},
  350.  pages     = {031009},
  351.  publisher = {American Society of Mechanical Engineers},
  352. }
  353.  
  354. @Article{Costa2005,
  355.  author    = {Costa, L and Vilar, R and Reti, T and Deus, AM},
  356.  title     = {Rapid tooling by laser powder deposition: Process simulation using finite element analysis},
  357.  journal   = {Acta Materialia},
  358.  year      = {2005},
  359.  volume    = {53},
  360.  number    = {14},
  361.  pages     = {3987--3999},
  362.  publisher = {Elsevier},
  363. }
  364.  
  365. @Article{Yin2010,
  366.  author    = {Yin, H and Felicelli, SD},
  367.  title     = {Dendrite growth simulation during solidification in the LENS process},
  368.  journal   = {Acta Materialia},
  369.  year      = {2010},
  370.  volume    = {58},
  371.  number    = {4},
  372.  pages     = {1455--1465},
  373.  publisher = {Elsevier},
  374. }
  375.  
  376. @Article{Crespo2010,
  377.  author    = {Crespo, Ant{\'o}nio and Vilar, Rui},
  378.  title     = {Finite element analysis of the rapid manufacturing of Ti--6Al--4V parts by laser powder deposition},
  379.  journal   = {Scripta Materialia},
  380.  year      = {2010},
  381.  volume    = {63},
  382.  number    = {1},
  383.  pages     = {140--143},
  384.  publisher = {Elsevier},
  385. }
  386.  
  387. @Article{Purtonen2014,
  388.  author    = {Purtonen, Tuomas and Kalliosaari, Anne and Salminen, Antti},
  389.  title     = {Monitoring and adaptive control of laser processes},
  390.  journal   = {Physics Procedia},
  391.  year      = {2014},
  392.  volume    = {56},
  393.  pages     = {1218--1231},
  394.  keywords  = {Theory, Thermal Monitoring},
  395.  publisher = {Elsevier},
  396. }
  397.  
  398. @Article{Collins2003,
  399.  author    = {Collins, PC and Banerjee, R and Banerjee, S and Fraser, HL},
  400.  title     = {Laser deposition of compositionally graded titanium--vanadium and titanium--molybdenum alloys},
  401.  journal   = {Materials Science and Engineering: A},
  402.  year      = {2003},
  403.  volume    = {352},
  404.  number    = {1},
  405.  pages     = {118--128},
  406.  publisher = {Elsevier},
  407. }
  408.  
  409. @Article{Dobbelstein2016,
  410.  author    = {Dobbelstein, Henrik and Thiele, Magnus and Gurevich, Evgeny L and George, Easo P and Ostendorf, Andreas},
  411.  title     = {Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW},
  412.  journal   = {Physics Procedia},
  413.  year      = {2016},
  414.  volume    = {83},
  415.  pages     = {624--633},
  416.  publisher = {Elsevier},
  417. }
  418.  
  419. @InProceedings{Kong2007,
  420.  author    = {Kong, CY and Carroll, PA and Brown, P and Scudamore, RJ},
  421.  title     = {The effect of average powder particle size on deposition efficiency, deposit height and surface roughness in the direct metal laser deposition process},
  422.  booktitle = {14th International Conference on Joining of Materials},
  423.  year      = {2007},
  424. }
  425.  
  426. @Article{Cormier2004,
  427.  author    = {Cormier, Denis and Harrysson, Ola and West, Harvey},
  428.  title     = {Characterization of H13 steel produced via electron beam melting},
  429.  journal   = {Rapid Prototyping Journal},
  430.  year      = {2004},
  431.  volume    = {10},
  432.  number    = {1},
  433.  pages     = {35--41},
  434.  keywords  = {Theory, DLD},
  435.  publisher = {Emerald Group Publishing Limited},
  436. }
  437.  
  438. @Article{Hofmeister1999,
  439.  author  = {Hofmeister, William and Wert, Melissa and Smugeresky, John and Philliber, Joel A and Griffith, Michelle and Ensz, Mark},
  440.  title   = {Investigating solidification with the laser-engineered net shaping (LENSTM) process},
  441.  journal = {JOM},
  442.  year    = {1999},
  443.  volume  = {51},
  444.  number  = {7},
  445.  pages   = {1--6},
  446. }
  447.  
  448. @Article{Srivastava2001,
  449.  author    = {Srivastava, D and Chang, ITH and Loretto, MH},
  450.  title     = {The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples},
  451.  journal   = {Intermetallics},
  452.  year      = {2001},
  453.  volume    = {9},
  454.  number    = {12},
  455.  pages     = {1003--1013},
  456.  publisher = {Elsevier},
  457. }
  458.  
  459. @Article{Wen2010,
  460.  author    = {Wen, Shaoyi and Shin, Yung C},
  461.  title     = {Modeling of transport phenomena during the coaxial laser direct deposition process},
  462.  journal   = {Journal of Applied Physics},
  463.  year      = {2010},
  464.  volume    = {108},
  465.  number    = {4},
  466.  pages     = {044908},
  467.  keywords  = {Theory, DLD, Powder},
  468.  publisher = {AIP Publishing},
  469. }
  470.  
  471. @Article{Laeng2000,
  472.  author        = {Laeng, James and Stewart, JG and Liou, Frank W},
  473.  title         = {Laser metal forming processes for rapid prototyping-A review},
  474.  journal       = {International Journal of Production Research},
  475.  year          = {2000},
  476.  volume        = {38},
  477.  number        = {16},
  478.  pages         = {3973--3996},
  479.  __markedentry = {[David:]},
  480.  publisher     = {Taylor \& Francis},
  481. }
  482.  
  483. @Article{Han2004,
  484.  author        = {Han, L and Phatak, KM and Liou, FW},
  485.  title         = {Modeling of laser cladding with powder injection},
  486.  journal       = {Metallurgical and Materials transactions B},
  487.  year          = {2004},
  488.  volume        = {35},
  489.  number        = {6},
  490.  pages         = {1139--1150},
  491.  __markedentry = {[David:6]},
  492.  publisher     = {Springer},
  493. }
  494.  
  495. @Article{Xiong2009,
  496.  author    = {Xiong, Yuhong and Hofmeister, William H and Cheng, Zhao and Smugeresky, John E and Lavernia, Enrique J and Schoenung, Julie M},
  497.  title     = {In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide--cobalt during laser deposition},
  498.  journal   = {Acta Materialia},
  499.  year      = {2009},
  500.  volume    = {57},
  501.  number    = {18},
  502.  pages     = {5419--5429},
  503.  publisher = {Elsevier},
  504. }
  505.  
  506. @Article{Wang2008,
  507.  author    = {Wang, L and Felicelli, S and Gooroochurn, Y and Wang, PT and Horstemeyer, MF},
  508.  title     = {Optimization of the LENS{\textregistered} process for steady molten pool size},
  509.  journal   = {Materials Science and Engineering: A},
  510.  year      = {2008},
  511.  volume    = {474},
  512.  number    = {1},
  513.  pages     = {148--156},
  514.  publisher = {Elsevier},
  515. }
  516.  
  517. @Article{Labudovic2003,
  518.  author    = {Labudovic, M and Hu, D and Kovacevic, R},
  519.  title     = {A three dimensional model for direct laser metal powder deposition and rapid prototyping},
  520.  journal   = {Journal of materials science},
  521.  year      = {2003},
  522.  volume    = {38},
  523.  number    = {1},
  524.  pages     = {35--49},
  525.  publisher = {Springer},
  526. }
  527.  
  528. @Article{Wen2011,
  529.  author    = {Wen, Shaoyi and Shin, Yung C},
  530.  title     = {Comprehensive predictive modeling and parametric analysis of multitrack direct laser deposition processes},
  531.  journal   = {Journal of Laser Applications},
  532.  year      = {2011},
  533.  volume    = {23},
  534.  number    = {2},
  535.  pages     = {022003},
  536.  publisher = {Laser Institute of America},
  537. }
  538.  
  539. @Article{Long2008,
  540.  author    = {Long, Ri-Sheng and Liu, Wei-Jun and Fei, XING and Wang, Hua-Bing},
  541.  title     = {Numerical simulation of thermal behavior during laser metal deposition shaping},
  542.  journal   = {Transactions of nonferrous metals society of china},
  543.  year      = {2008},
  544.  volume    = {18},
  545.  number    = {3},
  546.  pages     = {691--699},
  547.  publisher = {Elsevier},
  548. }
  549.  
  550. @Comment{jabref-meta: databaseType:bibtex;}
Advertisement
Add Comment
Please, Sign In to add comment