Advertisement
Guest User

Untitled

a guest
Aug 18th, 2016
564
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 9.72 KB | None | 0 0
  1. (* Patched for use with FeynCalc *)
  2. (* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)
  3. (* *)
  4. (* This file has been automatically generated by FeynRules. *)
  5. (* *)
  6. (* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)
  7.  
  8.  
  9. FR$ModelInformation={
  10. ModelName->"test8dimModel",
  11. Authors -> {"N. Christensen", "C. Duhr", "B. Fuks"},
  12. Version -> "1.4.6",
  13. Date -> "15. 04. 2014",
  14. Institutions -> {"Michigan State University", "Universite catholique de Louvain (CP3)", "IPHC Strasbourg / University of Strasbourg"},
  15. URLs -> "http://feynrules.phys.ucl.ac.be/view/Main/StandardModel"};
  16.  
  17. FR$ClassesTranslation={};
  18.  
  19. FR$InteractionOrderPerturbativeExpansion={{QCD, 0}, {QED, 0}, {NP, 0}};
  20.  
  21. FR$GoldstoneList={S[2], S[3]};
  22.  
  23. (* Declared indices *)
  24.  
  25. IndexRange[ Index[Gluon] ] = NoUnfold[ Range[ 8 ] ]
  26.  
  27. IndexRange[ Index[SU2W] ] = Range[ 3 ]
  28.  
  29. IndexRange[ Index[Generation] ] = Range[ 3 ]
  30.  
  31. IndexRange[ Index[Colour] ] = NoUnfold[ Range[ 3 ] ]
  32.  
  33. IndexRange[ Index[SU2D] ] = Range[ 2 ]
  34.  
  35. IndexRange[ Index[GenAdj] ] = NoUnfold[ Range[ 8 ] ]
  36.  
  37. (* Declared particles *)
  38.  
  39. M$ClassesDescription = {
  40. V[1] == {
  41. SelfConjugate -> True,
  42. PropagatorLabel -> "a",
  43. PropagatorType -> Sine,
  44. PropagatorArrow -> None,
  45. Mass -> 0,
  46. Indices -> {} },
  47.  
  48. V[2] == {
  49. SelfConjugate -> True,
  50. PropagatorLabel -> "Z",
  51. PropagatorType -> Sine,
  52. PropagatorArrow -> None,
  53. Mass -> FCGV["MZ"],
  54. Indices -> {} },
  55.  
  56. V[3] == {
  57. SelfConjugate -> False,
  58. QuantumNumbers -> {Q},
  59. PropagatorLabel -> "W",
  60. PropagatorType -> Sine,
  61. PropagatorArrow -> Forward,
  62. Mass -> FCGV["MW"],
  63. Indices -> {} },
  64.  
  65. V[4] == {
  66. SelfConjugate -> True,
  67. Indices -> {Index[Gluon]},
  68. PropagatorLabel -> "G",
  69. PropagatorType -> Cycles,
  70. PropagatorArrow -> None,
  71. Mass -> 0 },
  72.  
  73. V[5] == {
  74. SelfConjugate -> True,
  75. PropagatorLabel -> "aux",
  76. PropagatorType -> ScalarDash,
  77. PropagatorArrow -> None,
  78. Mass -> MAUX,
  79. Indices -> {} },
  80.  
  81. V[6] == {
  82. SelfConjugate -> True,
  83. Indices -> {Index[Gluon]},
  84. PropagatorLabel -> "auxc",
  85. PropagatorType -> ScalarDash,
  86. PropagatorArrow -> None,
  87. Mass -> MAUX },
  88.  
  89. U[1] == {
  90. SelfConjugate -> False,
  91. QuantumNumbers -> {GhostNumber},
  92. PropagatorLabel -> "uA",
  93. PropagatorType -> GhostDash,
  94. PropagatorArrow -> Forward,
  95. Mass -> 0,
  96. Indices -> {} },
  97.  
  98. U[2] == {
  99. SelfConjugate -> False,
  100. QuantumNumbers -> {GhostNumber},
  101. PropagatorLabel -> "uZ",
  102. PropagatorType -> GhostDash,
  103. PropagatorArrow -> Forward,
  104. Mass -> FCGV["MZ"],
  105. Indices -> {} },
  106.  
  107. U[31] == {
  108. SelfConjugate -> False,
  109. QuantumNumbers -> {GhostNumber, Q},
  110. PropagatorLabel -> "uWp",
  111. PropagatorType -> GhostDash,
  112. PropagatorArrow -> Forward,
  113. Mass -> FCGV["MW"],
  114. Indices -> {} },
  115.  
  116. U[32] == {
  117. SelfConjugate -> False,
  118. QuantumNumbers -> {GhostNumber, -Q},
  119. PropagatorLabel -> "uWm",
  120. PropagatorType -> GhostDash,
  121. PropagatorArrow -> Forward,
  122. Mass -> FCGV["MW"],
  123. Indices -> {} },
  124.  
  125. U[4] == {
  126. SelfConjugate -> False,
  127. Indices -> {Index[Gluon]},
  128. QuantumNumbers -> {GhostNumber},
  129. PropagatorLabel -> "uG",
  130. PropagatorType -> GhostDash,
  131. PropagatorArrow -> Forward,
  132. Mass -> 0 },
  133.  
  134. F[1] == {
  135. Indices -> {Index[Generation]},
  136. SelfConjugate -> False,
  137. QuantumNumbers -> {LeptonNumber},
  138. PropagatorLabel -> "v",
  139. PropagatorType -> Straight,
  140. PropagatorArrow -> Forward,
  141. Mass -> 0 },
  142.  
  143. F[2] == {
  144. Indices -> {Index[Generation]},
  145. SelfConjugate -> False,
  146. QuantumNumbers -> {-Q, LeptonNumber},
  147. PropagatorLabel -> "l",
  148. PropagatorType -> Straight,
  149. PropagatorArrow -> Forward,
  150. Mass -> Ml },
  151.  
  152. F[3] == {
  153. Indices -> {Index[Generation], Index[Colour]},
  154. SelfConjugate -> False,
  155. QuantumNumbers -> {(2*Q)/3},
  156. PropagatorLabel -> "uq",
  157. PropagatorType -> Straight,
  158. PropagatorArrow -> Forward,
  159. Mass -> Mu },
  160.  
  161. F[4] == {
  162. Indices -> {Index[Generation], Index[Colour]},
  163. SelfConjugate -> False,
  164. QuantumNumbers -> {-Q/3},
  165. PropagatorLabel -> "dq",
  166. PropagatorType -> Straight,
  167. PropagatorArrow -> Forward,
  168. Mass -> Md },
  169.  
  170. S[1] == {
  171. SelfConjugate -> True,
  172. PropagatorLabel -> "H",
  173. PropagatorType -> ScalarDash,
  174. PropagatorArrow -> None,
  175. Mass -> FCGV["MH"],
  176. Indices -> {} },
  177.  
  178. S[2] == {
  179. SelfConjugate -> True,
  180. PropagatorLabel -> "Go",
  181. PropagatorType -> ScalarDash,
  182. PropagatorArrow -> None,
  183. Mass -> FCGV["MZ"],
  184. Indices -> {} },
  185.  
  186. S[3] == {
  187. SelfConjugate -> False,
  188. QuantumNumbers -> {Q},
  189. PropagatorLabel -> "GP",
  190. PropagatorType -> ScalarDash,
  191. PropagatorArrow -> None,
  192. Mass -> FCGV["MW"],
  193. Indices -> {} },
  194.  
  195. T[1] == {
  196. SelfConjugate -> True,
  197. PropagatorLabel -> "AUXV",
  198. PropagatorType -> Sine,
  199. PropagatorArrow -> None,
  200. Mass -> MAUXV,
  201. Indices -> {} },
  202.  
  203. T[2] == {
  204. SelfConjugate -> True,
  205. Indices -> {Index[Gluon]},
  206. PropagatorLabel -> "AUXVC",
  207. PropagatorType -> Sine,
  208. PropagatorArrow -> None,
  209. Mass -> MAUXVC },
  210.  
  211. T[3] == {
  212. SelfConjugate -> True,
  213. Indices -> {Index[GenAdj]},
  214. PropagatorLabel -> "AUXVF",
  215. PropagatorType -> Sine,
  216. PropagatorArrow -> None,
  217. Mass -> MAUXVF },
  218.  
  219. T[4] == {
  220. SelfConjugate -> True,
  221. Indices -> {Index[Gluon], Index[GenAdj]},
  222. PropagatorLabel -> "AUXVFC",
  223. PropagatorType -> Sine,
  224. PropagatorArrow -> None,
  225. Mass -> MAUXVFC }
  226. }
  227.  
  228.  
  229. (* Definitions *)
  230.  
  231. FAGaugeXi[ V[1] ] = FAGaugeXi[A];
  232. FAGaugeXi[ V[2] ] = FAGaugeXi[Z];
  233. FAGaugeXi[ V[3] ] = FAGaugeXi[W];
  234. FAGaugeXi[ V[4] ] = FAGaugeXi[G];
  235. FAGaugeXi[ U[1] ] = FAGaugeXi[A];
  236. FAGaugeXi[ U[2] ] = FAGaugeXi[Z];
  237. FAGaugeXi[ U[31] ] = FAGaugeXi[W];
  238. FAGaugeXi[ U[32] ] = FAGaugeXi[W];
  239. FAGaugeXi[ U[4] ] = FAGaugeXi[G];
  240. FAGaugeXi[ S[1] ] = 1;
  241. FAGaugeXi[ S[2] ] = FAGaugeXi[Z];
  242. FAGaugeXi[ S[3] ] = FAGaugeXi[W];
  243.  
  244. FCGV["MZ"][ ___ ] := FCGV["MZ"];
  245. FCGV["MW"][ ___ ] := FCGV["MW"];
  246. MAUX[ ___ ] := MAUX;
  247. Ml[ 1 ] := Me;
  248. Ml[ 2 ] := MMU;
  249. Ml[ 3 ] := MTA;
  250. Mu[ 1, _ ] := FCGV["MU"];
  251. Mu[ 1 ] := FCGV["MU"];
  252. Mu[ 2, _ ] := FCGV["MC"];
  253. Mu[ 2 ] := FCGV["MC"];
  254. Mu[ 3, _ ] := FCGV["MT"];
  255. Mu[ 3 ] := FCGV["MT"];
  256. Md[ 1, _ ] := FCGV["MD"];
  257. Md[ 1 ] := FCGV["MD"];
  258. Md[ 2, _ ] := FCGV["MS"];
  259. Md[ 2 ] := FCGV["MS"];
  260. Md[ 3, _ ] := FCGV["MB"];
  261. Md[ 3 ] := FCGV["MB"];
  262. FCGV["MH"][ ___ ] := FCGV["MH"];
  263. MAUXV[ ___ ] := MAUXV;
  264. MAUXVC[ ___ ] := MAUXVC;
  265. MAUXVF[ ___ ] := MAUXVF;
  266. MAUXVFC[ ___ ] := MAUXVFC;
  267.  
  268.  
  269. TheLabel[ V[4, {__}] ] := TheLabel[V[4]];
  270. TheLabel[ V[6, {__}] ] := TheLabel[V[6]];
  271. TheLabel[ U[4, {__}] ] := TheLabel[U[4]];
  272. TheLabel[ F[1, {1}] ] := "ve";
  273. TheLabel[ F[1, {2}] ] := "vm";
  274. TheLabel[ F[1, {3}] ] := "vt";
  275. TheLabel[ F[2, {1}] ] := "e";
  276. TheLabel[ F[2, {2}] ] := "mu";
  277. TheLabel[ F[2, {3}] ] := "ta";
  278. TheLabel[ F[3, {1, _}] ] := "u";
  279. TheLabel[ F[3, {1}] ] := "u";
  280. TheLabel[ F[3, {2, _}] ] := "c";
  281. TheLabel[ F[3, {2}] ] := "c";
  282. TheLabel[ F[3, {3, _}] ] := "t";
  283. TheLabel[ F[3, {3}] ] := "t";
  284. TheLabel[ F[4, {1, _}] ] := "d";
  285. TheLabel[ F[4, {1}] ] := "d";
  286. TheLabel[ F[4, {2, _}] ] := "s";
  287. TheLabel[ F[4, {2}] ] := "s";
  288. TheLabel[ F[4, {3, _}] ] := "b";
  289. TheLabel[ F[4, {3}] ] := "b";
  290. TheLabel[ T[2, {__}] ] := TheLabel[T[2]];
  291. TheLabel[ T[3, {__}] ] := TheLabel[T[3]];
  292. TheLabel[ T[4, {__}] ] := TheLabel[T[4]];
  293.  
  294.  
  295. (* Couplings (calculated by FeynRules) *)
  296.  
  297. M$CouplingMatrices = {
  298.  
  299. C[ -F[3, {e1x2, e1x3}] , F[3, {e2x2, e2x3}] , V[5] ] == {{I*gc1L*IndexDelta[e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}, {I*gc1R*IndexDelta[e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}},
  300.  
  301. C[ -F[4, {e1x2, e1x3}] , F[4, {e2x2, e2x3}] , V[5] ] == {{I*gc2L*IndexDelta[e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}, {I*gc2R*IndexDelta[e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}},
  302.  
  303. C[ -F[3, {e1x2, e1x3}] , F[3, {e2x2, e2x3}] , V[6, {e3x2}] ] == {{I*gc3L*IndexDelta[e1x2, e2x2]*FASUNT[e3x2, e1x3, e2x3], 0}, {I*gc3R*IndexDelta[e1x2, e2x2]*FASUNT[e3x2, e1x3, e2x3], 0}},
  304.  
  305. C[ -F[4, {e1x2, e1x3}] , F[4, {e2x2, e2x3}] , V[6, {e3x2}] ] == {{I*gc4L*IndexDelta[e1x2, e2x2]*FASUNT[e3x2, e1x3, e2x3], 0}, {I*gc4R*IndexDelta[e1x2, e2x2]*FASUNT[e3x2, e1x3, e2x3], 0}},
  306.  
  307. C[ -F[4, {e1x2, e1x3}] , F[4, {e2x2, e2x3}] , T[1] ] == {{gc5*IndexDelta[e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}, {gc5*IndexDelta[e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}, {0, 0}, {0, 0}},
  308.  
  309. C[ -F[4, {e1x2, e1x3}] , F[4, {e2x2, e2x3}] , T[2, {e3x3}] ] == {{gc6*IndexDelta[e1x2, e2x2]*FASUNT[e3x3, e1x3, e2x3], 0}, {gc6*IndexDelta[e1x2, e2x2]*FASUNT[e3x3, e1x3, e2x3], 0}, {0, 0}, {0, 0}},
  310.  
  311. C[ -F[4, {e1x2, e1x3}] , F[4, {e2x2, e2x3}] , T[4, {e3x3, e3x4}] ] == {{gc7*FASUNT[e3x4,e1x2, e2x2]*FASUNT[e3x3, e1x3, e2x3], 0}, {gc7*FASUNT[e3x4,e1x2, e2x2]*FASUNT[e3x3, e1x3, e2x3], 0}, {0, 0}, {0, 0}},
  312.  
  313. C[ -F[4, {e1x2, e1x3}] , F[4, {e2x2, e2x3}] , T[3, {e3x3}] ] == {{gc8*FASUNT[e3x3,e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}, {gc8*FASUNT[e3x3,e1x2, e2x2]*IndexDelta[e1x3, e2x3], 0}, {0, 0}, {0, 0}}
  314.  
  315. }
  316.  
  317. (* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)
  318.  
  319. (* Parameter replacement lists (These lists were created by FeynRules) *)
  320.  
  321. (* FA Couplings *)
  322.  
  323. M$FACouplings = {
  324. gc1L -> CoeffO1q,
  325. gc1R -> CoeffO1uR,
  326. gc2L -> CoeffO1q,
  327. gc2R -> CoeffO1dR,
  328. gc3L -> CoeffO8q,
  329. gc3R -> CoeffO8uR,
  330. gc4L -> CoeffO8q,
  331. gc4R -> CoeffO8dR,
  332. gc5 -> c1/Lambda,
  333. gc6 -> c3/Lambda,
  334. gc7 -> c4/Lambda,
  335. gc8 -> c2/Lambda};
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement