Advertisement
AbhiMishr

SpeciesPrediction_PredictiveModelling

Jan 18th, 2016
422
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
R 7.36 KB | None | 0 0
  1. train<-read.csv("SpeciesPresenceTrain.csv")
  2. test<-read.csv("SpeciesPresenceTestFeatures.csv")
  3.  
  4. set.seed(2)
  5.  
  6.  
  7. train_from_train <- train[1:600,2:16]
  8. target_a_train_from_train <- train[1:600,17]
  9. test_from_train <- train[601:800,2:16]
  10. target_a_test_from_train <- train[601:800,17]
  11.  
  12. library(class)
  13.  
  14. knn_pred_a <-knn (train = train_from_train, test = test_from_train, cl= target_a_train_from_train, k = 29)
  15. table(knn_pred_a, target_a_test_from_train)
  16. mean(knn_pred_a != target_a_test_from_train)
  17. knn_pred_a_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,17], k = 29)
  18. knn_pred_a_ON_TEST
  19.  
  20.  
  21. target_b_train_from_train <- train[1:600,18]
  22. target_b_test_from_train <- train[601:800,18]
  23. knn_pred_b <-knn (train = train_from_train, test = test_from_train, cl= target_b_train_from_train, k = 29)
  24. table(knn_pred_b, target_b_test_from_train)
  25. mean(knn_pred_b != target_b_test_from_train)
  26. knn_pred_b_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,18], k = 29)
  27. knn_pred_b_ON_TEST
  28.  
  29.  
  30.  
  31. target_c_train_from_train <- train[1:600,19]
  32. target_c_test_from_train <- train[601:800,19]
  33. knn_pred_c <-knn (train = train_from_train, test = test_from_train, cl= target_c_train_from_train, k = 29)
  34. table(knn_pred_c, target_c_test_from_train)
  35. mean(knn_pred_c != target_c_test_from_train)
  36. knn_pred_c_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,19], k = 29)
  37. knn_pred_c_ON_TEST
  38.  
  39.  
  40. target_d_train_from_train <- train[1:600,20]
  41. target_d_test_from_train <- train[601:800,20]
  42. knn_pred_d <-knn (train = train_from_train, test = test_from_train, cl= target_d_train_from_train, k = 29)
  43. table(knn_pred_d, target_d_test_from_train)
  44. mean(knn_pred_d != target_d_test_from_train)
  45. knn_pred_d_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,20], k = 29)
  46. knn_pred_d_ON_TEST
  47.  
  48.  
  49.  
  50. target_e_train_from_train <- train[1:600,21]
  51. target_e_test_from_train <- train[601:800,21]
  52. knn_pred_e <-knn (train = train_from_train, test = test_from_train, cl= target_e_train_from_train, k = 29)
  53. table(knn_pred_e, target_e_test_from_train)
  54. mean(knn_pred_e != target_e_test_from_train)
  55. knn_pred_e_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,21], k = 29)
  56. knn_pred_e_ON_TEST
  57.  
  58.  
  59. target_f_train_from_train <- train[1:600,22]
  60. target_f_test_from_train <- train[601:800,22]
  61. knn_pred_f <-knn (train = train_from_train, test = test_from_train, cl= target_f_train_from_train, k = 29)
  62. table(knn_pred_f, target_f_test_from_train)
  63. mean(knn_pred_f != target_f_test_from_train)
  64. knn_pred_f_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,22], k = 29)
  65. knn_pred_f_ON_TEST
  66.  
  67.  
  68.  
  69. target_g_train_from_train <- train[1:600,23]
  70. target_g_test_from_train <- train[601:800,23]
  71. knn_pred_g <-knn (train = train_from_train, test = test_from_train, cl= target_g_train_from_train, k = 29)
  72. table(knn_pred_g, target_g_test_from_train)
  73. mean(knn_pred_g != target_g_test_from_train)
  74. knn_pred_g_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,23], k = 29)
  75. knn_pred_g_ON_TEST
  76.  
  77.  
  78.  
  79. target_h_train_from_train <- train[1:600,24]
  80. target_h_test_from_train <- train[601:800,24]
  81. knn_pred_h <-knn (train = train_from_train, test = test_from_train, cl= target_h_train_from_train, k = 29)
  82. table(knn_pred_h, target_h_test_from_train)
  83. mean(knn_pred_h != target_h_test_from_train)
  84. knn_pred_h_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,24], k = 29)
  85. knn_pred_h_ON_TEST
  86.  
  87.  
  88.  
  89. target_i_train_from_train <- train[1:600,25]
  90. target_i_test_from_train <- train[601:800,25]
  91. knn_pred_i <-knn (train = train_from_train, test = test_from_train, cl= target_i_train_from_train, k = 29)
  92. table(knn_pred_i, target_i_test_from_train)
  93. mean(knn_pred_i != target_i_test_from_train)
  94. knn_pred_i_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,25], k = 29)
  95. knn_pred_i_ON_TEST
  96.  
  97.  
  98.  
  99. target_j_train_from_train <- train[1:600,26]
  100. target_j_test_from_train <- train[601:800,26]
  101. knn_pred_j <-knn (train = train_from_train, test = test_from_train, cl= target_j_train_from_train, k = 29)
  102. table(knn_pred_j, target_j_test_from_train)
  103. mean(knn_pred_j != target_j_test_from_train)
  104. knn_pred_j_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,26], k = 29)
  105. knn_pred_j_ON_TEST
  106.  
  107.  
  108. target_k_train_from_train <- train[1:600,27]
  109. target_k_test_from_train <- train[601:800,27]
  110. knn_pred_k <-knn (train = train_from_train, test = test_from_train, cl= target_k_train_from_train, k = 29)
  111. table(knn_pred_k, target_k_test_from_train)
  112. mean(knn_pred_k != target_k_test_from_train)
  113. knn_pred_k_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,27], k = 29)
  114. knn_pred_k_ON_TEST
  115.  
  116.  
  117. target_l_train_from_train <- train[1:600,28]
  118. target_l_test_from_train <- train[601:800,28]
  119. knn_pred_l <-knn (train = train_from_train, test = test_from_train, cl= target_l_train_from_train, k = 29)
  120. table(knn_pred_l, target_l_test_from_train)
  121. mean(knn_pred_l != target_l_test_from_train)
  122. knn_pred_l_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,28], k = 29)
  123. knn_pred_l_ON_TEST
  124.  
  125.  
  126. target_m_train_from_train <- train[1:600,29]
  127. target_m_test_from_train <- train[601:800,29]
  128. knn_pred_m <-knn (train = train_from_train, test = test_from_train, cl= target_m_train_from_train, k = 29)
  129. table(knn_pred_m, target_m_test_from_train)
  130. mean(knn_pred_m != target_m_test_from_train)
  131. knn_pred_m_ON_TEST <-knn (train = train[,2:16], test = test[2:16], cl= train[,29], k = 29)
  132. knn_pred_m_ON_TEST
  133.  
  134. #################################################################################
  135.  
  136. install.packages("mldr")
  137. library(mldr)
  138.  
  139. train_mldr <-mldr_from_dataframe(train[601:800,],labelIndices = c(17,18,19,20,21,22,23,24,25,26,27,28,29))
  140. head(train_mldr)
  141.  
  142. #Don't Run MldrGUI until required
  143. mldrGUI()
  144.  
  145.  
  146. predictions <- c (as.integer(knn_pred_a)-1 ,as.integer(knn_pred_b)-1, as.integer(knn_pred_c)-1,
  147.                   as.integer(knn_pred_d)-1, as.integer(knn_pred_e)-1, as.integer(knn_pred_f)-1,
  148.                   as.integer(knn_pred_g)-1, as.integer(knn_pred_h)-1, as.integer(knn_pred_i)-1,
  149.                   as.integer(knn_pred_j)-1, as.integer(knn_pred_k)-1, as.integer(knn_pred_l)-1,
  150.                   as.integer(knn_pred_m)-1)
  151. dim(predictions)
  152.  
  153. predictions_matrix <- matrix(predictions, nrow = 200, ncol=13)
  154. colnames(predictions_matrix)<-c("a","b","c","d","e","f","g","h","i","j","k","l","m")
  155. head(predictions_matrix)
  156.  
  157. dim(predictions_matrix)
  158. summary(train_mldr)
  159.  
  160. res <- mldr_evaluate(train_mldr, predictions_matrix)
  161. plot(res$ROC, main = "ROC curve for species")
  162. res$AUC
  163. res$ROC
  164.  
  165. test_predicted <- c (test$id,
  166.                      as.integer(knn_pred_a_ON_TEST)-1 ,as.integer(knn_pred_b_ON_TEST)-1, as.integer(knn_pred_c_ON_TEST)-1,
  167.                      as.integer(knn_pred_d_ON_TEST)-1, as.integer(knn_pred_e_ON_TEST)-1, as.integer(knn_pred_f_ON_TEST)-1,
  168.                      as.integer(knn_pred_g_ON_TEST)-1, as.integer(knn_pred_h_ON_TEST)-1, as.integer(knn_pred_i_ON_TEST)-1,
  169.                      as.integer(knn_pred_j_ON_TEST)-1, as.integer(knn_pred_k_ON_TEST)-1, as.integer(knn_pred_l_ON_TEST)-1,
  170.                      as.integer(knn_pred_m_ON_TEST)-1)
  171.  
  172. test_predicted_matrix <- matrix(test_predicted, nrow = 260, ncol=14)
  173. colnames(test_predicted_matrix)<-c("id","a","b","c","d","e","f","g","h","i","j","k","l","m")
  174. head(test_predicted_matrix)
  175. tail(test_predicted_matrix)
  176.  
  177. write.csv(test_predicted_matrix, file = "KNN_test_predicted.csv",row.names=FALSE)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement