Advertisement
Guest User

Untitled

a guest
Sep 29th, 2016
56
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.62 KB | None | 0 0
  1. \documentclass{article}
  2. \usepackage{amsmath,amssymb}
  3. \newcommand{\justif}[2]{&{#1}&\text{#2}}
  4. \newcommand{\conv}{\ast}
  5.  
  6. \begin{document}
  7. \section*{Question 1}
  8.  
  9. \subsection{Show that for any discrete-time signal $v$, $(v \conv \delta)[n] = v[n]$ }
  10. Proof:
  11. \begin{alignat*}{2}
  12. \text{Let} f[n] &= (v \conv \delta)[n] \\
  13. f[n] &=\sum_{i = -\infty}^{\infty} v[i] \delta[n-i] &\quad &\text{by definition of convolution}\\
  14. &= v[n] &\quad &\text{by sifting theorem}\\
  15. \end{alignat*}
  16.  
  17.  
  18. \subsection{Show that for any discrete-time signal $v$, $(v \conv Delay_M(\delta))[n] = Delay_M(v)$ }
  19. Proof:
  20. \begin{alignat*}{2}
  21. &\text{Let $v[n]$ be a discrete-time signal} \\
  22. &\text{Let $f[n] = (v \conv Delay_M(\delta))[n]$} \\
  23. f[n] &=\sum_{i = -\infty}^{\infty} v[i] Delay_i(Delay_M(\delta)) &\quad &\text{by definition of convolution}\\
  24. f[n] &=\sum_{i = -\infty}^{\infty} v[i] \delta[n-M-i ] \\
  25. &\text{We introduce a change of varaible, $o = n - M$} \\
  26. f[n] &=\sum_{i = -\infty}^{\infty} v[i] \delta[o-i ] \\
  27. &= v[o] &\quad &\text{by sifting theorem}\\
  28. &= v[n-M] \\
  29. &= Delay_M(v) &\quad &\text{by Definition of $Delay_M$}\\
  30. \end{alignat*}
  31.  
  32. \subsection{Show that for any two discrete-time signals $v$ and $w$, and any integer $M$, $v \conv Delay_M(w) = Delay_M(v \conv w) $}
  33. Proof:
  34. \begin{alignat*}{2}
  35. &\text{Let $v[n]$ and $w[n]$ be discrete-time signals} \\
  36. &\text{Let $f[n] = (v \conv Delay_M(w))[n]$} \\
  37. f[n] &=\sum_{i = -\infty}^{\infty} v[i] Delay_i(Delay_M(w)) &\quad &\text{by definition of convolution}\\
  38. f[n] &=\sum_{i = -\infty}^{\infty} v[i] w[n-M-i ] \\
  39. &\text{We introduce a change of varaible, $o = n - M$} \\
  40. f[n] &=\sum_{i = -\infty}^{\infty} v[i] w[o-i ] \\
  41. &= (v \conv w)[o] &\quad &\text{by definition of convolution}\\
  42. &= (v \conv w)[n-M] \\
  43. &= Delay_M(v \conv w) &\quad &\text{by Definition of $Delay_M$}\\
  44. \end{alignat*}
  45.  
  46. \subsection{Show that for any discrete-time signal $v$, $Flip(Delay_M(v)) = Delay_{-M}(Flip(v))$}
  47. \begin{alignat*}{2}
  48. \text{Let} f[n] &= Flip(Delay_M(v)) \\
  49. &= Flip(v[n-M]) &\quad &\text{by Definition of $Delay_M$}\\
  50. &= v[-(n-M)] &\quad &\text{by Definition of $Flip$}\\
  51. &= v[-n+M] \\
  52. &= Delay_{-M}(v[-n]) &\quad &\text{by Definition of $Delay_M$}\\
  53. &= Delay_{-M}(Flip(v)) &\quad &\text{by Definition of $Flip$}\\
  54. \end{alignat*}
  55.  
  56. \section*{Question 2}
  57. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement