Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- %data = csvread('train.csv');
- trainingSetSize = 250;
- for i = 1:trainingSetSize
- img = data(i, 2:end);
- for j = 1:length(img)
- if img(j) > 0
- img(j) = 1;
- end
- end
- data(i, 2:end) = img;
- end
- function v = adjustWeights(w, trainingSet, learningRate)
- dw = zeros(1, length(w));
- for i = 1:size(trainingSet, 1)
- t = trainingSet(i, 1);
- x = trainingSet(i, 2:end);
- dw = dw + (dot(w, x) - t) * x;
- end
- v = w - learningRate * dw;
- end
- w = rand(1, 28*28);
- learningRate = 0.001;
- for i = 1:10
- w = adjustWeights(w, data(1:trainingSetSize, :), learningRate / i);
- end
- w
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement