Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from __future__ import print_function
- import logging
- import numpy as np
- from optparse import OptionParser
- import sys
- from time import time
- import matplotlib.pyplot as plt
- from sklearn.datasets import load_files
- from sklearn.datasets import fetch_20newsgroups
- from sklearn.feature_extraction.text import TfidfVectorizer
- from sklearn.feature_extraction.text import HashingVectorizer
- from sklearn.feature_selection import SelectKBest, chi2
- from sklearn.linear_model import RidgeClassifier
- from sklearn.pipeline import Pipeline
- from sklearn.svm import LinearSVC
- from sklearn.linear_model import SGDClassifier
- from sklearn.linear_model import Perceptron
- from sklearn.linear_model import PassiveAggressiveClassifier
- from sklearn.naive_bayes import BernoulliNB, MultinomialNB
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.neighbors import NearestCentroid
- from sklearn.ensemble import RandomForestClassifier
- from sklearn.utils.extmath import density
- from sklearn import metrics
- from sklearn.cross_validation import train_test_split
- # Display progress logs on stdout
- logging.basicConfig(level=logging.INFO,
- format='%(asctime)s %(levelname)s %(message)s')
- # parse commandline arguments
- op = OptionParser()
- op.add_option("--report",
- action="store_true", dest="print_report",
- help="Print a detailed classification report.")
- op.add_option("--chi2_select",
- action="store", type="int", dest="select_chi2",
- help="Select some number of features using a chi-squared test")
- op.add_option("--confusion_matrix",
- action="store_true", dest="print_cm",
- help="Print the confusion matrix.")
- op.add_option("--top10",
- action="store_true", dest="print_top10",
- help="Print ten most discriminative terms per class"
- " for every classifier.")
- op.add_option("--all_categories",
- action="store_true", dest="all_categories",
- help="Whether to use all categories or not.")
- op.add_option("--use_hashing",
- action="store_true",
- help="Use a hashing vectorizer.")
- op.add_option("--n_features",
- action="store", type=int, default=2 ** 16,
- help="n_features when using the hashing vectorizer.")
- op.add_option("--filtered",
- action="store_true",
- help="Remove newsgroup information that is easily overfit: "
- "headers, signatures, and quoting.")
- ###############################################################################
- # Load some categories from the training set
- print("Loading dataset ")
- # data_train = fetch_20newsgroups(subset='train', categories=categories,
- # shuffle=True, random_state=42,
- # remove=remove)
- # data_test = fetch_20newsgroups(subset='test', categories=categories,
- # shuffle=True, random_state=42,
- # remove=remove)
- dataset = load_files('./TED_dataset/Topics/')
- train, test = train_test_split(dataset, train_size = 0.8)
- # categories = data_train.target_names # for case categories == None
- # def size_mb(docs):
- # return sum(len(s.encode('utf-8')) for s in docs) / 1e6
- # data_train_size_mb = size_mb(data_train.data)
- # data_test_size_mb = size_mb(data_test.data)
- # print("%d documents - %0.3fMB (training set)" % (
- # len(data_train.data), data_train_size_mb))
- # print("%d documents - %0.3fMB (test set)" % (
- # len(data_test.data), data_test_size_mb))
- # print("%d categories" % len(categories))
- # print()
- # # split a training set and a test set
- # y_train, y_test = data_train.target, data_test.target
- # print("Extracting features from the training data using a sparse vectorizer")
- # t0 = time()
- # if opts.use_hashing:
- # vectorizer = HashingVectorizer(stop_words='english', non_negative=True,
- # n_features=opts.n_features)
- # X_train = vectorizer.transform(data_train.data)
- # else:
- # vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
- # stop_words='english')
- # X_train = vectorizer.fit_transform(data_train.data)
- # duration = time() - t0
- # print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
- # print("n_samples: %d, n_features: %d" % X_train.shape)
- # print()
- # print("Extracting features from the test data using the same vectorizer")
- # t0 = time()
- # X_test = vectorizer.transform(data_test.data)
- # duration = time() - t0
- # print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
- # print("n_samples: %d, n_features: %d" % X_test.shape)
- # print()
- # # mapping from integer feature name to original token string
- # if opts.use_hashing:
- # feature_names = None
- # else:
- # feature_names = vectorizer.get_feature_names()
- # if opts.select_chi2:
- # print("Extracting %d best features by a chi-squared test" %
- # opts.select_chi2)
- # t0 = time()
- # ch2 = SelectKBest(chi2, k=opts.select_chi2)
- # X_train = ch2.fit_transform(X_train, y_train)
- # X_test = ch2.transform(X_test)
- # if feature_names:
- # # keep selected feature names
- # feature_names = [feature_names[i] for i
- # in ch2.get_support(indices=True)]
- # print("done in %fs" % (time() - t0))
- # print()
- # if feature_names:
- # feature_names = np.asarray(feature_names)
- # def trim(s):
- # """Trim string to fit on terminal (assuming 80-column display)"""
- # return s if len(s) <= 80 else s[:77] + "..."
- # ###############################################################################
- # # Benchmark classifiers
- # def benchmark(clf):
- # print('_' * 80)
- # print("Training: ")
- # print(clf)
- # t0 = time()
- # clf.fit(X_train, y_train)
- # train_time = time() - t0
- # print("train time: %0.3fs" % train_time)
- # t0 = time()
- # pred = clf.predict(X_test)
- # test_time = time() - t0
- # print("test time: %0.3fs" % test_time)
- # score = metrics.accuracy_score(y_test, pred)
- # print("accuracy: %0.3f" % score)
- # if hasattr(clf, 'coef_'):
- # print("dimensionality: %d" % clf.coef_.shape[1])
- # print("density: %f" % density(clf.coef_))
- # if opts.print_top10 and feature_names is not None:
- # print("top 10 keywords per class:")
- # for i, category in enumerate(categories):
- # top10 = np.argsort(clf.coef_[i])[-10:]
- # print(trim("%s: %s"
- # % (category, " ".join(feature_names[top10]))))
- # print()
- # if opts.print_report:
- # print("classification report:")
- # print(metrics.classification_report(y_test, pred,
- # target_names=categories))
- # if opts.print_cm:
- # print("confusion matrix:")
- # print(metrics.confusion_matrix(y_test, pred))
- # print()
- # clf_descr = str(clf).split('(')[0]
- # return clf_descr, score, train_time, test_time
- # results = []
- # for clf, name in (
- # (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
- # (Perceptron(n_iter=50), "Perceptron"),
- # (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
- # (KNeighborsClassifier(n_neighbors=10), "kNN"),
- # (RandomForestClassifier(n_estimators=100), "Random forest")):
- # print('=' * 80)
- # print(name)
- # results.append(benchmark(clf))
- # for penalty in ["l2", "l1"]:
- # print('=' * 80)
- # print("%s penalty" % penalty.upper())
- # # Train Liblinear model
- # results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,
- # dual=False, tol=1e-3)))
- # # Train SGD model
- # results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
- # penalty=penalty)))
- # # Train SGD with Elastic Net penalty
- # print('=' * 80)
- # print("Elastic-Net penalty")
- # results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
- # penalty="elasticnet")))
- # # Train NearestCentroid without threshold
- # print('=' * 80)
- # print("NearestCentroid (aka Rocchio classifier)")
- # results.append(benchmark(NearestCentroid()))
- # # Train sparse Naive Bayes classifiers
- # print('=' * 80)
- # print("Naive Bayes")
- # results.append(benchmark(MultinomialNB(alpha=.01)))
- # results.append(benchmark(BernoulliNB(alpha=.01)))
- # print('=' * 80)
- # print("LinearSVC with L1-based feature selection")
- # # The smaller C, the stronger the regularization.
- # # The more regularization, the more sparsity.
- # results.append(benchmark(Pipeline([
- # ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)),
- # ('classification', LinearSVC())
- # ])))
- # # make some plots
- # indices = np.arange(len(results))
- # results = [[x[i] for x in results] for i in range(4)]
- # clf_names, score, training_time, test_time = results
- # training_time = np.array(training_time) / np.max(training_time)
- # test_time = np.array(test_time) / np.max(test_time)
- # plt.figure(figsize=(12, 8))
- # plt.title("Score")
- # plt.barh(indices, score, .2, label="score", color='r')
- # plt.barh(indices + .3, training_time, .2, label="training time", color='g')
- # plt.barh(indices + .6, test_time, .2, label="test time", color='b')
- # plt.yticks(())
- # plt.legend(loc='best')
- # plt.subplots_adjust(left=.25)
- # plt.subplots_adjust(top=.95)
- # plt.subplots_adjust(bottom=.05)
- # for i, c in zip(indices, clf_names):
- # plt.text(-.3, i, c)
- # plt.show()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement