Advertisement
Guest User

Untitled

a guest
Nov 21st, 2014
155
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.80 KB | None | 0 0
  1. documentclass [12pt,letterpaper]{exam}
  2. usepackage{amsmath, amsthm, amsfonts, amssymb, amscd, latexsym}
  3. usepackage{type1cm}
  4. usepackage{simplemath}
  5.  
  6. oddsidemargin 0.0in
  7. evensidemargin 0.0in
  8. textwidth 6.0in
  9. headheight 0.0in
  10. topmargin 1.0in
  11. textheight 8.5in
  12.  
  13. header{ECSE-500-01-1}{Assignment 8 Answers}{19.11.2014}
  14. %begin{math}
  15. newcounter{count}
  16.  
  17. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18.  
  19. begin{document}
  20.  
  21. printanswers
  22. begin{enumerate}
  23. item If E=$phi$ then it is obvious that a $notin$ E $Rightarrow$ $delta_a$ (E)=0. Now let $ra E_n$ be a sequence
  24. of subsets of X such that:
  25. \*n$neq$m$Rightarrow$ $E_n$$cap$$E_m$=$Phi$
  26. This is not a trivial statement as it also implies that "a" could belong to at most one term of the sequence.
  27. \*Hence we have:
  28. begin{enumerate}
  29. item'a' belongs to a term $E_i$ of the sequence
  30. item'a' does not belong to any of the terms.
  31. end{enumerate}
  32. For (a):
  33. \* We have a $in$ ${bigcuplimits_{n=1}^infty}$ $E_n$=${bigcuplimits_{n=1 \* nneq i}^infty}$ $E_n$ $cup$ $E_i$$Rightarrow$ $delta_a$(${bigcuplimits_{n=1}^infty}$$E_n$)=1
  34. \*But,
  35. \*${sumlimits_{n=1}^infty}$$delta_a$ $(E_n)$=${sumlimits_{n=1 nneq i}^infty}$$delta_a$ $(E_n)$ + $delta_a$ $(E_i)$=1 (Since $delta_a$ $(E_n)$=$forall$ n$neq$ i)
  36. \*Hence,
  37. \*$delta_a$(${bigcuplimits_{n=1}^infty}$$E_n)$= ${sumlimits_{n=1}^infty}$ $delta_a$ $(E_n)$\*\*
  38. For (b):\*
  39. a $notin$ ${bigcuplimits_{n=1}^infty}$ $E_n$ $Leftrightarrow$a $notin$ $E_n$ $forall$ n $Rightarrow$${bigcuplimits_{n=1}^infty}$$delta_a$($E_n$)
  40. Thus from the above we conclude that $delta_a$ is a measure on X (the Dirac Measure in a)
  41. item begin{enumerate}
  42. item $int_E$f d$mu$ = $int_E$f d$delta_a$
  43. \*Assuming f is measurable, we know that if a $notin$E then \*
  44. $delta_a$(E)=0 and thus $int_E$f d$delta_a$=0 \*
  45. If a$in$E, then we can define the set B={a} and C=E-B \*
  46. We get, $mu$(e)=$delta_a$(e)=0. Since a$notin$e.
  47. Also, we have B$subset$E, thus, assuming E$in$m,
  48. by corollary of theorm 11.2 (lecture 10) we have \*
  49. $int_E$f d$delta_a$ = $int_a$f d$delta_a$ = f(a) \*
  50. Thus, we have $int_E$f d
  51. $
  52. delta_a =
  53. begin{cases}
  54. 0 & text{ if } ain E\
  55. f(a) & text{ if } anotin E
  56. end{cases}
  57. $\*
  58. item Let E = ${n_1 ... n_k Leftrightarrow$E = ${bigcuplimits_{n=1}^k}$ ${n_k}\*
  59. Then,\*
  60. int_E f dmu = {int_{bigcuplimits_{n=1}^k{n}} f dmu_c}=
  61. {sumlimits_{n=1}^k} {int_{{n}} f dmu_c =
  62. {sumlimits_{n=1}^k} f(n_i) =
  63. {sumlimits_{x_iin E}}f(n_i)
  64. $end{enumerate}
  65. end{enumerate}
  66. %end{math}
  67. end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement