Guest User

Untitled

a guest
Mar 24th, 2016
131
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 11.30 KB | None | 0 0
  1. \chapter{Phased antenna array basics}
  2.  
  3. This chapter gives a brief introduction to phased antenna array techniques.
  4. First, the basic theory of phased array antennas is discussed, and then a short
  5. overview of different techniques on how to feed the antennas is given.
  6.  
  7. %-------------------------------------------------------------------------------
  8.  
  9. \section{Construction}
  10.  
  11. As the name suggests, an array antenna is constructed from an array of so-called
  12. array elements. \autoref{fig:lin_array} shows different kinds of how the array
  13. elements can be arranged.
  14.  
  15. \begin{figure}[ht]
  16.  \centering
  17.  \subfigure[linear]{\includegraphics{bilder/lin_array.pdf}}
  18.  \hspace{1cm}
  19.  \subfigure[planar]{\includegraphics{bilder/plan_array.pdf}}
  20.  \hspace{1cm}
  21.  \subfigure[circular]{\includegraphics{bilder/circ_array.pdf}}
  22.  \caption{Types of phased arrays}
  23.  \label{fig:lin_array}
  24. \end{figure}
  25.  
  26. The feed for each array element can be realised in two different configurations:
  27. \begin{itemize}[style=multiline]
  28. \item each element is fed with the same signal (same magnitude and phase). This
  29. improves the directivity as well as the gain \cite{gustrau}.
  30. \item the elements can be fed with a phase-shifted signal (but all with the
  31. same magnitude). This is then called a \emph{phased array}. By varying the
  32. phase shift, this configuration allows to move the direction of the main lobe.
  33. \end{itemize}
  34. If the phase shift between the array elements is not fixed but adjustable, it is
  35. possible to measure the angle of incidence of a signal received by the array
  36. \cite{Liou2009}, or to electronically adjust the main lobe of the array when
  37. transmitting \cite{Damman2012, Helaly1990}.
  38.  
  39. %-------------------------------------------------------------------------------
  40.  
  41. \section{Principle of operation}
  42.  
  43. The principle of operation of a phased array is first explained for the receiver
  44. case. Due to the reciprocity property \cite{Elliott, Kraus} of the antennas, the
  45. transmit case is equivalent.
  46.  
  47. \autoref{fig:lin_array} shows a simple linear antenna array with an incident
  48. plane wave. Plane waves do not exist in reality, but far away from the
  49. transmitting antenna, the spherical waves produced by the antenna can be
  50. approximately viewed as plane waves.
  51.  
  52. \begin{figure}[ht]
  53.  \centering
  54.  \includegraphics{bilder/array_wavefront.pdf}
  55.  \caption{Schematic overview of a linear antenna array}
  56.  \label{fig:lin_array}
  57. \end{figure}
  58.  
  59. Assume the plane wave is incident to the array at the angle $\alpha$. Then, for
  60. the array elements on the left side, the wave front has to travel the additional
  61. distance
  62. \begin{equation}
  63. \Delta l = l_1 - l_2 = d \cdot \sin \alpha
  64. \end{equation}
  65. for which the time
  66. \begin{equation}
  67. \Delta t = \frac{\Delta l}{c}
  68. \end{equation}
  69. is needed. This gives a phase shift of
  70. \begin{equation}
  71. \varphi' = \frac{ \Delta t }{ T } = f\,\Delta t = \frac{f\,d\,\sin\alpha}{c}
  72. \end{equation}
  73. with
  74. \begin{equation}
  75. \frac{f}{c} = \frac{1}{\lambda}
  76. \end{equation}
  77. we thus have:
  78. \begin{equation}
  79. \varphi' = \frac{d\,\sin\alpha}{\lambda} \label{eq:arrayphaseshift1}
  80. \end{equation}
  81. Now assume the array elements are spaced at a distance $d = \lambda$ and the
  82. wave is incident at an angle of $\alpha = 90$°. From these conditions,
  83. \autoref{eq:arrayphaseshift1} would yield a phase shift of 1, but actually it
  84. should be $2\,\pi$, so a factor of $2\,\pi$ needs to be included in
  85. \autoref{eq:arrayphaseshift1} from which we get the phase shift relation
  86. \begin{equation}
  87. \varphi = \frac{2\,\pi\,d\,\sin\alpha}{\lambda}
  88. \end{equation}
  89. and with the wavenumber
  90. \begin{equation}
  91. k = \frac{2\,\pi}{\lambda}
  92. \end{equation}
  93. the phase shift can also be expressed as follows:
  94. \begin{equation}
  95. \varphi = k\,d\,\sin\alpha \label{eq:arrayphaseshift2}
  96. \end{equation}
  97. In the transmitting case, it is clear now due to the principle of reciprocity
  98. that the direction in which the waves propagate away from the antenna can be
  99. adjusted by phase shifting the feed signals for the individual array elements
  100. according to \autoref{eq:arrayphaseshift2}. If the phase shift between the
  101. array element feed signals is $\varphi$, the angle will be:
  102. \begin{equation}
  103. \alpha = \arcsin\frac{\varphi}{k\,d}
  104. \end{equation}
  105.  
  106. As can be seen from this theory, a linear antenna array allows to adjust the
  107. transmitting and receiving angle in one dimension. As a consequence, the angle
  108. can be adjusted in two dimensions if a two-dimensional array of antennas is
  109. used. Such a configuration allows to transmit (or receive) in any direction in
  110. the half space. This is also referenced to as spatial filtering.
  111.  
  112. \italictitle{Remark}
  113. For the analysis of the linear phased array in the transmitting case, the
  114. Huygens-Fresnel principle normally used for refraction problems in the optics
  115. regime can also be used as a model to explain the angle of the produced wave
  116. front \cite{optics}. Refer to \autoref{fig:refraction}. This
  117. figure\footnote{Image taken from \cite{optics}} shows a wave incident to an air-
  118. water interface. Each point where the wave fronts of the incident wave strike
  119. the interface, a source of a spherical wave can be imagined. These waves
  120. propagate into the water domain and the superposition of the many spherical wave
  121. fronts produces the resulting plane wave.
  122.  
  123. \begin{figure}[ht]
  124.  \centering
  125.  \includegraphics[width=5cm]{bilder/refraction.png}
  126.  \caption{Refraction of a wave at an air-water interface}
  127.  \label{fig:refraction}
  128. \end{figure}
  129.  
  130. The arrangement of these small sources of spherical waves at the air-water
  131. interface is very similar to a linear phased array.
  132.  
  133. %-------------------------------------------------------------------------------
  134.  
  135. \section{Model for the OAM state}
  136.  
  137. \autoref{fig:lin_to_circ}(a) shows an example of a phased array with 5 elements.
  138. Assume that the elements are fed with a signal which is phase-shifted by a
  139. constant amount from element to element. This will produce a phase front as
  140. indicated in red.
  141.  
  142. Now imagine that the two array ends -- the elements \#0 and \#4 -- are folded
  143. together on a circle, as shown in \autoref{fig:lin_to_circ}(b). The phase front
  144. must still have the same phase shift from element to element, but since the
  145. elements are arranged on a circular shape, the effect could be compared to the
  146. effect of a spiral phase plate with an incident plane wave. The SPP was
  147. described in detail in the former project.
  148.  
  149. \begin{figure}[ht]
  150.  \centering
  151.  \subfigure[linear array]{\includegraphics{bilder/linear_phasefront.pdf}}
  152.  \hspace{1cm}
  153.  \subfigure[circular array]{\includegraphics{bilder/circ_phasefront.pdf}}
  154.  \caption{Converting a linear to a circular array}
  155.  \label{fig:lin_to_circ}
  156. \end{figure}
  157.  
  158. Between the lase element (\#4 in this case) and the first element (\#0), there
  159. is a phase front dislocation, as needed for the OAM. This also looks very
  160. similar to the SPP.
  161.  
  162. A null is expected in the centre of the circular array because the phase is
  163. ambiguous.
  164.  
  165. If the phase shift of the feed signal is increased, the phase dislocation will
  166. also increase and if the sign of the phase shift is inverted, the helicity of
  167. the resulting OAM state is also inverted.
  168.  
  169. Thus, if one manages to electronically control the phase shift, it would be
  170. possible to generate different OAM states with the same apparatus.
  171.  
  172. %-------------------------------------------------------------------------------
  173.  
  174. \subsection{Spherical wave model}
  175. The complex amplitude electric field of a plane wave is given by
  176. \begin{equation}
  177. E = A\,\E^{-\j\,k\,z}   \label{eq:planewave}
  178. \end{equation}
  179. if the wave is assumed to travel into positive $z$ direction.
  180.  
  181. Now we replace $z$ by
  182. \begin{equation}
  183. z \mapsto \sqrt{x^2 + y^2 + z^2}
  184. \end{equation}
  185. which yields
  186. \begin{equation}
  187. E = A \exp\left(-\j\,k\sqrt{x^2+y^2+z^2}\right) \label{eq:simplesphericalwave}
  188. \end{equation}
  189. from \autoref{eq:planewave}. This is now used as a simple spherical wave. From
  190. the Hertz dipole, it can be found that $A$ can be conveniently set to
  191. $\frac{1}{r}=\frac{1}{\sqrt{x^2+y^2+z^2}}$ (see \cite{harrington}) and $k$ is
  192. set to $2\,\pi$ for reasons of simplification.
  193.  
  194. Assume $n$ antennas are arranged as a circular array in the $xy$-plane at $z=0$.
  195. Each antenna shall produce an electric field with
  196. the amplitude given by \autoref{eq:simplesphericalwave}. If the near-field
  197. couplings of these antennas are neglected, the far-fields can simply be
  198. added together.
  199. For the $i$-th antenna
  200. \begin{equation}
  201. E_i = \frac{\exp\left(-\j\,2\,\pi\sqrt{\left(x-x_i\right)^2+\left(y-y_i\right)^2+z^2}
  202. + \j\,\varphi_i \right)}{\sqrt{x^2+y^2+z^2}}  \label{eq:simplesphericalwave}
  203. \end{equation}
  204. yields the complex amplitude.   Note the
  205. additionally introduced phase shift $\varphi_i$ which is needed to take the feed
  206. phase shift into account.
  207.  
  208. The $x$- and $y$-positions of the individual antennas are found with
  209. \begin{equation}
  210. x_i = \varrho \cos \frac{2\,\pi\,i}{n}
  211. \end{equation}
  212. and
  213. \begin{equation}
  214. y_i = \varrho \sin \frac{2\,\pi\,i}{n}
  215. \end{equation}
  216. where $\varrho$ is the circular array radius. With
  217. \begin{equation}
  218. \varphi_i = \frac{2\,\pi\,i}{l}
  219. \end{equation}
  220. the phase shift associated with the OAM state $l$ is found.
  221.  
  222. The total field produced by all antennas together is then the superposition of
  223. the individual fields:
  224. \begin{equation}
  225. E_{\mrm{tot}} = \sum\limits_{i=0}^{n-1} E_i
  226. \end{equation}
  227. This is then evaluated at a fixed $z$ value ($z = const.$).
  228. \autoref{lst:matlabcode_oam} shows the implementation of this calculation in
  229. \matlab{}.
  230.  
  231. The \matlab{} code was evaluated for different numbers of elements
  232. and for different OAM states. \autoref{fig:matlabcalcu_array4_phase} shows a
  233. comparison of the resulting figures for different OAM states of an array with
  234. four elements.
  235.  
  236. \autoref{fig:matlabcalcu_array8_phase} (on page
  237. \pageref{fig:matlabcalcu_array8_phase}) shows the different OAM states for an
  238. eight element array.
  239.  
  240. \begin{figure}[ht]
  241.  \centering
  242.  \begin{gnuplot}[terminal = cairolatex, %
  243.   terminaloptions = pdf input color solid]
  244.   load 'plots/vorticeplots_4.gp'
  245.   \end{gnuplot} %$
  246.   \caption{Comparison of different OAM states of a four element array}
  247.  \label{fig:matlabcalcu_array4_phase}
  248. \end{figure}
  249.  
  250.  
  251. \begin{lstlisting}[float, label = {lst:matlabcode_oam}, language=matlab, %
  252. caption = {\matlab{} script to calculate the phase}]
  253. clear all; close all force; clc
  254.  
  255. elem = 12; % number of elements in the array
  256. l = 2; % oam state
  257. r = 0.01; % array radius
  258. k = 2*pi; % wavenumber
  259. ang = (0:1:elem-1)*(2*pi/elem); % angular positions of the elements
  260. xpos =  r*cos(ang); % x positions
  261. ypos =  r*sin(ang); % y positions
  262. phi = l*ang; % phase shift
  263.  
  264. % anonymous function to calculate the amplitude for one antenna
  265. En = @(x, y, z, n) ...
  266.     exp(-1i*k*sqrt((x-xpos(n)).^2 + (y-ypos(n)).^2 + z.^2) + 1i*phi(n));
  267.  
  268. % evaluate the total field at this z value
  269. z = 10000;
  270.  
  271. [x, y] = meshgrid(linspace(-10, 10, 1000), linspace(-10, 10, 1000));
  272. Etot = 0;
  273.  
  274. % add all fields together
  275. for n = 1:length(ang)
  276.     Etot = Etot + En(x, y, z, n);
  277. end
  278.  
  279.  
  280. figure(1);
  281. pcolor(x, y, angle(Etot));
  282. shading interp
  283. axis square
  284. \end{lstlisting}
  285.  
  286. \begin{figure}[ht]
  287.  \centering
  288.  \begin{gnuplot}[terminal = cairolatex, %
  289.   terminaloptions = pdf input color solid]
  290.   load 'plots/vorticeplots_8.gp'
  291.   \end{gnuplot} %$
  292.   \caption{Comparison of different OAM states of a eight element array}
  293.  \label{fig:matlabcalcu_array8_phase}
  294. \end{figure}
Advertisement
Add Comment
Please, Sign In to add comment