Advertisement
Guest User

Untitled

a guest
Jan 21st, 2015
246
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.07 KB | None | 0 0
  1. import sklearn
  2. from sklearn import linear_model
  3.  
  4. import numpy as np
  5.  
  6. data = []
  7. target = []
  8. with open("data_yequalsx.csv") as inFile:
  9.     for row in inFile:
  10.         vals = row.split(",")
  11.         data.append([float(x) for x in vals[:-1]])
  12.         target.append(float(vals[-1]))
  13.  
  14. test_samples= len(data)/10
  15.  
  16. train_data = [0]*(len(data) - test_samples)
  17. train_target = [0]*(len(data) - test_samples)
  18. test_data = [0]*(test_samples)
  19. test_target = [0]*(test_samples)
  20. train_index = 0
  21. test_index = 0
  22. for j in range(len(data)):
  23.     if j >= test_samples:
  24.         train_data[train_index] = data[j]
  25.         train_target[train_index] = target[j]
  26.         train_index += 1
  27.     else:
  28.         test_data[test_index] = data[j]
  29.         test_target[test_index] = target[j]
  30.         test_index += 1
  31.  
  32. model = linear_model.SGDRegressor(n_iter=100, learning_rate="invscaling", eta0=0.0001, power_t=0.5, penalty="l2", alpha=0.0001, loss="squared_loss")
  33. model.fit(train_data, train_target)
  34. print(model.coef_)
  35. print(model.intercept_)
  36.  
  37. result = model.predict(test_data)
  38. mse = np.mean((result - test_target) ** 2)
  39. print("Mean Squared Error = %s" % str(mse))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement