Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import sklearn
- from sklearn import linear_model
- import numpy as np
- data = []
- target = []
- with open("data_yequalsx.csv") as inFile:
- for row in inFile:
- vals = row.split(",")
- data.append([float(x) for x in vals[:-1]])
- target.append(float(vals[-1]))
- test_samples= len(data)/10
- train_data = [0]*(len(data) - test_samples)
- train_target = [0]*(len(data) - test_samples)
- test_data = [0]*(test_samples)
- test_target = [0]*(test_samples)
- train_index = 0
- test_index = 0
- for j in range(len(data)):
- if j >= test_samples:
- train_data[train_index] = data[j]
- train_target[train_index] = target[j]
- train_index += 1
- else:
- test_data[test_index] = data[j]
- test_target[test_index] = target[j]
- test_index += 1
- model = linear_model.SGDRegressor(n_iter=100, learning_rate="invscaling", eta0=0.0001, power_t=0.5, penalty="l2", alpha=0.0001, loss="squared_loss")
- model.fit(train_data, train_target)
- print(model.coef_)
- print(model.intercept_)
- result = model.predict(test_data)
- mse = np.mean((result - test_target) ** 2)
- print("Mean Squared Error = %s" % str(mse))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement