Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- name: "AlexNet"
- 2 layer {
- 3 name: "data"
- 4 type: "Data"
- 5 top: "data"
- 6 top: "label"
- 7 include {
- 8 phase: TRAIN
- 9 }
- 10 transform_param {
- 11 mirror: true
- 12 crop_size: 227
- 13 mean_file: "data/threats/aa_mean.binaryproto"
- 14 }
- 15 data_param {
- 16 source: "examples/threats/aa_train_lmdb"
- 17 batch_size: 256
- 18 backend: LMDB
- 19 }
- 20 }
- 21 layer {
- 22 name: "data"
- 23 type: "Data"
- 24 top: "data"
- 25 top: "label"
- 26 include {
- 27 phase: TEST
- 28 }
- 29 transform_param {
- 30 mirror: false
- 31 crop_size: 227
- 32 mean_file: "data/threats/aa_mean.binaryproto"
- 33 }
- 34 data_param {
- 35 source: "examples/threats/aa_val_lmdb"
- 36 batch_size: 50
- 37 backend: LMDB
- 38 }
- 39 }
- 40 layer {
- 41 name: "conv1"
- 42 type: "Convolution"
- 43 bottom: "data"
- 44 top: "conv1"
- 45 param {
- 46 lr_mult: 0.01
- 47 decay_mult: 1
- 48 }
- 49 param {
- 50 lr_mult: 0.01
- 51 decay_mult: 0
- 52 }
- 53 convolution_param {
- 54 num_output: 96
- 55 kernel_size: 11
- stride: 4
- 57 weight_filler {
- 58 type: "gaussian"
- 59 std: 0.01
- 60 }
- 61 bias_filler {
- 62 type: "constant"
- 63 value: 0
- 64 }
- 65 }
- 66 }
- 67 layer {
- 68 name: "relu1"
- 69 type: "ReLU"
- 70 bottom: "conv1"
- 71 top: "conv1"
- 72 }
- 73 layer {
- 74 name: "norm1"
- 75 type: "LRN"
- 76 bottom: "conv1"
- 77 top: "norm1"
- 78 lrn_param {
- 79 local_size: 5
- 80 alpha: 0.0001
- 81 beta: 0.75
- 82 }
- 83 }
- 84 layer {
- 85 name: "pool1"
- 86 type: "Pooling"
- 87 bottom: "norm1"
- 88 top: "pool1"
- 89 pooling_param {
- 90 pool: MAX
- 91 kernel_size: 3
- 92 stride: 2
- 93 }
- 94 }
- 95 layer {
- 96 name: "conv2"
- 97 type: "Convolution"
- 98 bottom: "pool1"
- 99 top: "conv2"
- 100 param {
- 101 lr_mult: 0.01
- 102 decay_mult: 1
- 103 }
- 104 param {
- 105 lr_mult: 0.01
- 106 decay_mult: 0
- 107 }
- 108 convolution_param {
- num_output: 256
- 110 pad: 2
- 111 kernel_size: 5
- 112 group: 2
- 113 weight_filler {
- 114 type: "gaussian"
- 115 std: 0.01
- 116 }
- 117 bias_filler {
- 118 type: "constant"
- 119 value: 0.1
- 120 }
- 121 }
- 122 }
- 123 layer {
- 124 name: "relu2"
- 125 type: "ReLU"
- 126 bottom: "conv2"
- 127 top: "conv2"
- 128 }
- 129 layer {
- 130 name: "norm2"
- 131 type: "LRN"
- 132 bottom: "conv2"
- 133 top: "norm2"
- 134 lrn_param {
- 135 local_size: 5
- 136 alpha: 0.0001
- 137 beta: 0.75
- 138 }
- 139 }
- 140 layer {
- 141 name: "pool2"
- 142 type: "Pooling"
- 143 bottom: "norm2"
- 144 top: "pool2"
- 145 pooling_param {
- 146 pool: MAX
- 147 kernel_size: 3
- 148 stride: 2
- 149 }
- 150 }
- 151 layer {
- 152 name: "conv3"
- 153 type: "Convolution"
- 154 bottom: "pool2"
- 155 top: "conv3"
- 156 param {
- 157 lr_mult: 0.01
- 158 decay_mult: 1
- 159 }
- 160 param {
- 161 lr_mult: 0.01
- decay_mult: 0
- 163 }
- 164 convolution_param {
- 165 num_output: 384
- 166 pad: 1
- 167 kernel_size: 3
- 168 weight_filler {
- 169 type: "gaussian"
- 170 std: 0.01
- 171 }
- 172 bias_filler {
- 173 type: "constant"
- 174 value: 0
- 175 }
- 176 }
- 177 }
- 178 layer {
- 179 name: "relu3"
- 180 type: "ReLU"
- 181 bottom: "conv3"
- 182 top: "conv3"
- 183 }
- 184 layer {
- 185 name: "conv4"
- 186 type: "Convolution"
- 187 bottom: "conv3"
- 188 top: "conv4"
- 189 param {
- 190 lr_mult: 0.01
- 191 decay_mult: 1
- 192 }
- 193 param {
- 194 lr_mult: 0.02
- 195 decay_mult: 0
- 196 }
- 197 convolution_param {
- 198 num_output: 384
- 199 pad: 1
- 200 kernel_size: 3
- 201 group: 2
- 202 weight_filler {
- 203 type: "gaussian"
- 204 std: 0.01
- 205 }
- 206 bias_filler {
- 207 type: "constant"
- 208 value: 0.1
- 209 }
- 210 }
- 211 }
- 212 layer {
- 213 name: "relu4"
- 214 type: "ReLU"
- bottom: "conv4"
- 216 top: "conv4"
- 217 }
- 218 layer {
- 219 name: "conv5"
- 220 type: "Convolution"
- 221 bottom: "conv4"
- 222 top: "conv5"
- 223 param {
- 224 lr_mult: 0.1
- 225 decay_mult: 1
- 226 }
- 227 param {
- 228 lr_mult: 0.2
- 229 decay_mult: 0
- 230 }
- 231 convolution_param {
- 232 num_output: 256
- 233 pad: 1
- 234 kernel_size: 3
- 235 group: 2
- 236 weight_filler {
- 237 type: "gaussian"
- 238 std: 0.01
- 239 }
- 240 bias_filler {
- 241 type: "constant"
- 242 value: 0.1
- 243 }
- 244 }
- 245 }
- 246 layer {
- 247 name: "relu5"
- 248 type: "ReLU"
- 249 bottom: "conv5"
- 250 top: "conv5"
- 251 }
- 252 layer {
- 253 name: "pool5"
- 254 type: "Pooling"
- 255 bottom: "conv5"
- 256 top: "pool5"
- 257 pooling_param {
- 258 pool: MAX
- 259 kernel_size: 3
- 260 stride: 2
- 261 }
- 262 }
- 263 layer {
- 264 name: "fc6"
- 265 type: "InnerProduct"
- 266 bottom: "pool5"
- 267 top: "fc6"
- param {
- 269 lr_mult: 1
- 270 decay_mult: 1
- 271 }
- 272 param {
- 273 lr_mult: 2
- 274 decay_mult: 0
- 275 }
- 276 inner_product_param {
- 277 num_output: 4096
- 278 weight_filler {
- 279 type: "gaussian"
- 280 std: 0.005
- 281 }
- 282 bias_filler {
- 283 type: "constant"
- 284 value: 0.1
- 285 }
- 286 }
- 287 }
- 288 layer {
- 289 name: "relu6"
- 290 type: "ReLU"
- 291 bottom: "fc6"
- 292 top: "fc6"
- 293 }
- 294 layer {
- 295 name: "drop6"
- 296 type: "Dropout"
- 297 bottom: "fc6"
- 298 top: "fc6"
- 299 dropout_param {
- 300 dropout_ratio: 0.5
- 301 }
- 302 }
- 303 layer {
- 304 name: "fc7"
- 305 type: "InnerProduct"
- 306 bottom: "fc6"
- 307 top: "fc7"
- 308 param {
- 309 lr_mult: 1
- 310 decay_mult: 1
- 311 }
- 312 param {
- 313 lr_mult: 2
- 314 decay_mult: 0
- 315 }
- 316 inner_product_param {
- 317 num_output: 4096
- 318 weight_filler {
- 319 type: "gaussian"
- 320 std: 0.005
- }
- 322 bias_filler {
- 323 type: "constant"
- 324 value: 0.1
- 325 }
- 326 }
- 327 }
- 328 layer {
- 329 name: "relu7"
- 330 type: "ReLU"
- 331 bottom: "fc7"
- 332 top: "fc7"
- 333 }
- 334 layer {
- 335 name: "drop7"
- 336 type: "Dropout"
- 337 bottom: "fc7"
- 338 top: "fc7"
- 339 dropout_param {
- 340 dropout_ratio: 0.5
- 341 }
- 342 }
- 343 layer {
- 344 name: "fc8_threats"
- 345 type: "InnerProduct"
- 346 bottom: "fc7"
- 347 top: "fc8_threats"
- 348 param {
- 349 lr_mult: 10
- 350 decay_mult: 1
- 351 }
- 352 param {
- 353 lr_mult: 20
- 354 decay_mult: 0
- 355 }
- 356 inner_product_param {
- 357 num_output: 4
- 358 weight_filler {
- 359 type: "gaussian"
- 360 std: 0.01
- 361 }
- 362 bias_filler {
- 363 type: "constant"
- 364 value: 0
- 365 }
- 366 }
- 367 }
- 368
- 369 layer {
- 370 name: "accuracy"
- 371 type: "Accuracy"
- 372 bottom: "fc8_threats"
- 373 bottom: "label"
- top: "accuracy"
- 375 include {
- 376 phase: TEST
- 377 }
- 378 }
- 379 layer {
- 380 name: "loss"
- 381 type: "SoftmaxWithLoss"
- 382 bottom: "fc8_threats"
- 383 bottom: "label"
- 384 top: "loss"
- 385 }
Advertisement
Add Comment
Please, Sign In to add comment