Guest User

Method 2

a guest
Jun 29th, 2016
114
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 7.08 KB | None | 0 0
  1. name: "AlexNet"
  2. 2 layer {
  3. 3 name: "data"
  4. 4 type: "Data"
  5. 5 top: "data"
  6. 6 top: "label"
  7. 7 include {
  8. 8 phase: TRAIN
  9. 9 }
  10. 10 transform_param {
  11. 11 mirror: true
  12. 12 crop_size: 227
  13. 13 mean_file: "data/threats/aa_mean.binaryproto"
  14. 14 }
  15. 15 data_param {
  16. 16 source: "examples/threats/aa_train_lmdb"
  17. 17 batch_size: 256
  18. 18 backend: LMDB
  19. 19 }
  20. 20 }
  21. 21 layer {
  22. 22 name: "data"
  23. 23 type: "Data"
  24. 24 top: "data"
  25. 25 top: "label"
  26. 26 include {
  27. 27 phase: TEST
  28. 28 }
  29. 29 transform_param {
  30. 30 mirror: false
  31. 31 crop_size: 227
  32. 32 mean_file: "data/threats/aa_mean.binaryproto"
  33. 33 }
  34. 34 data_param {
  35. 35 source: "examples/threats/aa_val_lmdb"
  36. 36 batch_size: 50
  37. 37 backend: LMDB
  38. 38 }
  39. 39 }
  40. 40 layer {
  41. 41 name: "conv1"
  42. 42 type: "Convolution"
  43. 43 bottom: "data"
  44. 44 top: "conv1"
  45. 45 param {
  46. 46 lr_mult: 0.01
  47. 47 decay_mult: 1
  48. 48 }
  49. 49 param {
  50. 50 lr_mult: 0.01
  51. 51 decay_mult: 0
  52. 52 }
  53. 53 convolution_param {
  54. 54 num_output: 96
  55. 55 kernel_size: 11
  56. stride: 4
  57. 57 weight_filler {
  58. 58 type: "gaussian"
  59. 59 std: 0.01
  60. 60 }
  61. 61 bias_filler {
  62. 62 type: "constant"
  63. 63 value: 0
  64. 64 }
  65. 65 }
  66. 66 }
  67. 67 layer {
  68. 68 name: "relu1"
  69. 69 type: "ReLU"
  70. 70 bottom: "conv1"
  71. 71 top: "conv1"
  72. 72 }
  73. 73 layer {
  74. 74 name: "norm1"
  75. 75 type: "LRN"
  76. 76 bottom: "conv1"
  77. 77 top: "norm1"
  78. 78 lrn_param {
  79. 79 local_size: 5
  80. 80 alpha: 0.0001
  81. 81 beta: 0.75
  82. 82 }
  83. 83 }
  84. 84 layer {
  85. 85 name: "pool1"
  86. 86 type: "Pooling"
  87. 87 bottom: "norm1"
  88. 88 top: "pool1"
  89. 89 pooling_param {
  90. 90 pool: MAX
  91. 91 kernel_size: 3
  92. 92 stride: 2
  93. 93 }
  94. 94 }
  95. 95 layer {
  96. 96 name: "conv2"
  97. 97 type: "Convolution"
  98. 98 bottom: "pool1"
  99. 99 top: "conv2"
  100. 100 param {
  101. 101 lr_mult: 0.01
  102. 102 decay_mult: 1
  103. 103 }
  104. 104 param {
  105. 105 lr_mult: 0.01
  106. 106 decay_mult: 0
  107. 107 }
  108. 108 convolution_param {
  109. num_output: 256
  110. 110 pad: 2
  111. 111 kernel_size: 5
  112. 112 group: 2
  113. 113 weight_filler {
  114. 114 type: "gaussian"
  115. 115 std: 0.01
  116. 116 }
  117. 117 bias_filler {
  118. 118 type: "constant"
  119. 119 value: 0.1
  120. 120 }
  121. 121 }
  122. 122 }
  123. 123 layer {
  124. 124 name: "relu2"
  125. 125 type: "ReLU"
  126. 126 bottom: "conv2"
  127. 127 top: "conv2"
  128. 128 }
  129. 129 layer {
  130. 130 name: "norm2"
  131. 131 type: "LRN"
  132. 132 bottom: "conv2"
  133. 133 top: "norm2"
  134. 134 lrn_param {
  135. 135 local_size: 5
  136. 136 alpha: 0.0001
  137. 137 beta: 0.75
  138. 138 }
  139. 139 }
  140. 140 layer {
  141. 141 name: "pool2"
  142. 142 type: "Pooling"
  143. 143 bottom: "norm2"
  144. 144 top: "pool2"
  145. 145 pooling_param {
  146. 146 pool: MAX
  147. 147 kernel_size: 3
  148. 148 stride: 2
  149. 149 }
  150. 150 }
  151. 151 layer {
  152. 152 name: "conv3"
  153. 153 type: "Convolution"
  154. 154 bottom: "pool2"
  155. 155 top: "conv3"
  156. 156 param {
  157. 157 lr_mult: 0.01
  158. 158 decay_mult: 1
  159. 159 }
  160. 160 param {
  161. 161 lr_mult: 0.01
  162. decay_mult: 0
  163. 163 }
  164. 164 convolution_param {
  165. 165 num_output: 384
  166. 166 pad: 1
  167. 167 kernel_size: 3
  168. 168 weight_filler {
  169. 169 type: "gaussian"
  170. 170 std: 0.01
  171. 171 }
  172. 172 bias_filler {
  173. 173 type: "constant"
  174. 174 value: 0
  175. 175 }
  176. 176 }
  177. 177 }
  178. 178 layer {
  179. 179 name: "relu3"
  180. 180 type: "ReLU"
  181. 181 bottom: "conv3"
  182. 182 top: "conv3"
  183. 183 }
  184. 184 layer {
  185. 185 name: "conv4"
  186. 186 type: "Convolution"
  187. 187 bottom: "conv3"
  188. 188 top: "conv4"
  189. 189 param {
  190. 190 lr_mult: 0.01
  191. 191 decay_mult: 1
  192. 192 }
  193. 193 param {
  194. 194 lr_mult: 0.02
  195. 195 decay_mult: 0
  196. 196 }
  197. 197 convolution_param {
  198. 198 num_output: 384
  199. 199 pad: 1
  200. 200 kernel_size: 3
  201. 201 group: 2
  202. 202 weight_filler {
  203. 203 type: "gaussian"
  204. 204 std: 0.01
  205. 205 }
  206. 206 bias_filler {
  207. 207 type: "constant"
  208. 208 value: 0.1
  209. 209 }
  210. 210 }
  211. 211 }
  212. 212 layer {
  213. 213 name: "relu4"
  214. 214 type: "ReLU"
  215. bottom: "conv4"
  216. 216 top: "conv4"
  217. 217 }
  218. 218 layer {
  219. 219 name: "conv5"
  220. 220 type: "Convolution"
  221. 221 bottom: "conv4"
  222. 222 top: "conv5"
  223. 223 param {
  224. 224 lr_mult: 0.1
  225. 225 decay_mult: 1
  226. 226 }
  227. 227 param {
  228. 228 lr_mult: 0.2
  229. 229 decay_mult: 0
  230. 230 }
  231. 231 convolution_param {
  232. 232 num_output: 256
  233. 233 pad: 1
  234. 234 kernel_size: 3
  235. 235 group: 2
  236. 236 weight_filler {
  237. 237 type: "gaussian"
  238. 238 std: 0.01
  239. 239 }
  240. 240 bias_filler {
  241. 241 type: "constant"
  242. 242 value: 0.1
  243. 243 }
  244. 244 }
  245. 245 }
  246. 246 layer {
  247. 247 name: "relu5"
  248. 248 type: "ReLU"
  249. 249 bottom: "conv5"
  250. 250 top: "conv5"
  251. 251 }
  252. 252 layer {
  253. 253 name: "pool5"
  254. 254 type: "Pooling"
  255. 255 bottom: "conv5"
  256. 256 top: "pool5"
  257. 257 pooling_param {
  258. 258 pool: MAX
  259. 259 kernel_size: 3
  260. 260 stride: 2
  261. 261 }
  262. 262 }
  263. 263 layer {
  264. 264 name: "fc6"
  265. 265 type: "InnerProduct"
  266. 266 bottom: "pool5"
  267. 267 top: "fc6"
  268. param {
  269. 269 lr_mult: 1
  270. 270 decay_mult: 1
  271. 271 }
  272. 272 param {
  273. 273 lr_mult: 2
  274. 274 decay_mult: 0
  275. 275 }
  276. 276 inner_product_param {
  277. 277 num_output: 4096
  278. 278 weight_filler {
  279. 279 type: "gaussian"
  280. 280 std: 0.005
  281. 281 }
  282. 282 bias_filler {
  283. 283 type: "constant"
  284. 284 value: 0.1
  285. 285 }
  286. 286 }
  287. 287 }
  288. 288 layer {
  289. 289 name: "relu6"
  290. 290 type: "ReLU"
  291. 291 bottom: "fc6"
  292. 292 top: "fc6"
  293. 293 }
  294. 294 layer {
  295. 295 name: "drop6"
  296. 296 type: "Dropout"
  297. 297 bottom: "fc6"
  298. 298 top: "fc6"
  299. 299 dropout_param {
  300. 300 dropout_ratio: 0.5
  301. 301 }
  302. 302 }
  303. 303 layer {
  304. 304 name: "fc7"
  305. 305 type: "InnerProduct"
  306. 306 bottom: "fc6"
  307. 307 top: "fc7"
  308. 308 param {
  309. 309 lr_mult: 1
  310. 310 decay_mult: 1
  311. 311 }
  312. 312 param {
  313. 313 lr_mult: 2
  314. 314 decay_mult: 0
  315. 315 }
  316. 316 inner_product_param {
  317. 317 num_output: 4096
  318. 318 weight_filler {
  319. 319 type: "gaussian"
  320. 320 std: 0.005
  321. }
  322. 322 bias_filler {
  323. 323 type: "constant"
  324. 324 value: 0.1
  325. 325 }
  326. 326 }
  327. 327 }
  328. 328 layer {
  329. 329 name: "relu7"
  330. 330 type: "ReLU"
  331. 331 bottom: "fc7"
  332. 332 top: "fc7"
  333. 333 }
  334. 334 layer {
  335. 335 name: "drop7"
  336. 336 type: "Dropout"
  337. 337 bottom: "fc7"
  338. 338 top: "fc7"
  339. 339 dropout_param {
  340. 340 dropout_ratio: 0.5
  341. 341 }
  342. 342 }
  343. 343 layer {
  344. 344 name: "fc8_threats"
  345. 345 type: "InnerProduct"
  346. 346 bottom: "fc7"
  347. 347 top: "fc8_threats"
  348. 348 param {
  349. 349 lr_mult: 10
  350. 350 decay_mult: 1
  351. 351 }
  352. 352 param {
  353. 353 lr_mult: 20
  354. 354 decay_mult: 0
  355. 355 }
  356. 356 inner_product_param {
  357. 357 num_output: 4
  358. 358 weight_filler {
  359. 359 type: "gaussian"
  360. 360 std: 0.01
  361. 361 }
  362. 362 bias_filler {
  363. 363 type: "constant"
  364. 364 value: 0
  365. 365 }
  366. 366 }
  367. 367 }
  368. 368
  369. 369 layer {
  370. 370 name: "accuracy"
  371. 371 type: "Accuracy"
  372. 372 bottom: "fc8_threats"
  373. 373 bottom: "label"
  374. top: "accuracy"
  375. 375 include {
  376. 376 phase: TEST
  377. 377 }
  378. 378 }
  379. 379 layer {
  380. 380 name: "loss"
  381. 381 type: "SoftmaxWithLoss"
  382. 382 bottom: "fc8_threats"
  383. 383 bottom: "label"
  384. 384 top: "loss"
  385. 385 }
Advertisement
Add Comment
Please, Sign In to add comment