SHARE
TWEET

Untitled




Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
- Train on 1291 samples, validate on 144 samples
- Epoch 1/20
- 2019-01-19 23:28:59.243532: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
- 2019-01-19 23:28:59.243565: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
- 2019-01-19 23:28:59.243571: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
- 2019-01-19 23:28:59.243575: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
- 2019-01-19 23:28:59.243744: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7823 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
- 1291/1291 [==============================] - 2s 2ms/step - loss: 0.3498 - acc: 0.8397 - val_loss: 0.2467 - val_acc: 0.8778
- Epoch 2/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.2105 - acc: 0.8984 - val_loss: 0.1924 - val_acc: 0.9069
- Epoch 3/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.1663 - acc: 0.9247 - val_loss: 0.1694 - val_acc: 0.9194
- Epoch 4/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.1389 - acc: 0.9421 - val_loss: 0.1562 - val_acc: 0.9333
- Epoch 5/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.1175 - acc: 0.9554 - val_loss: 0.1399 - val_acc: 0.9486
- Epoch 6/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.1025 - acc: 0.9603 - val_loss: 0.1276 - val_acc: 0.9514
- Epoch 7/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0916 - acc: 0.9655 - val_loss: 0.1156 - val_acc: 0.9639
- Epoch 8/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0833 - acc: 0.9695 - val_loss: 0.1069 - val_acc: 0.9681
- Epoch 9/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0762 - acc: 0.9730 - val_loss: 0.1023 - val_acc: 0.9750
- Epoch 10/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0692 - acc: 0.9747 - val_loss: 0.0952 - val_acc: 0.9750
- Epoch 11/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0634 - acc: 0.9768 - val_loss: 0.0892 - val_acc: 0.9750
- Epoch 12/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0580 - acc: 0.9785 - val_loss: 0.0788 - val_acc: 0.9792
- Epoch 13/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0533 - acc: 0.9786 - val_loss: 0.0718 - val_acc: 0.9806
- Epoch 14/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0489 - acc: 0.9811 - val_loss: 0.0665 - val_acc: 0.9806
- Epoch 15/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0450 - acc: 0.9830 - val_loss: 0.0631 - val_acc: 0.9806
- Epoch 16/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0421 - acc: 0.9842 - val_loss: 0.0606 - val_acc: 0.9806
- Epoch 17/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0386 - acc: 0.9862 - val_loss: 0.0594 - val_acc: 0.9778
- Epoch 18/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0363 - acc: 0.9867 - val_loss: 0.0567 - val_acc: 0.9792
- Epoch 19/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0337 - acc: 0.9876 - val_loss: 0.0556 - val_acc: 0.9806
- Epoch 20/20
- 1291/1291 [==============================] - 1s 1ms/step - loss: 0.0320 - acc: 0.9884 - val_loss: 0.0534 - val_acc: 0.9819
- 1291/1291 [==============================] - 0s 67us/step
- Test sample 44, actual label is [1 0 0 0 1] but predicted as [1 0 0 0 0]
- Test sample 52, actual label is [1 0 0 0 0] but predicted as [1 0 0 1 0]
- Test sample 55, actual label is [1 0 0 0 1] but predicted as [1 0 0 0 0]
- Test sample 57, actual label is [1 0 0 0 1] but predicted as [1 0 0 0 0]
- Test sample 69, actual label is [0 0 0 0 1] but predicted as [1 0 0 0 1]
- Test sample 78, actual label is [0 0 0 0 1] but predicted as [1 0 0 0 1]
- Test sample 87, actual label is [0 0 0 1 0] but predicted as [0 0 0 0 0]
- Test sample 98, actual label is [1 0 0 0 1] but predicted as [1 0 0 1 0]
- Test sample 120, actual label is [1 0 0 1 0] but predicted as [1 0 0 0 0]
- Test sample 128, actual label is [1 0 0 0 1] but predicted as [1 0 0 1 0]
- Test sample 133, actual label is [1 0 0 0 0] but predicted as [1 0 0 1 0]
- Accuracy is 0.9236
- testing done
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy.