SHARE
TWEET

Untitled

a guest Dec 13th, 2016 68 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. /usr/bin/python2.7 /mnt/Data/Projects/ecomobi-microservice/topica_analytic.py
  2. INFO:common.jdbc:Connecting to database
  3.     ->dbname='fb_detail' user='ecodata' host='104.199.222.244' port='5432' password='Eco12387654'
  4. INFO:parameter:Load 907 ids of universities
  5. INFO:parameter:Load 63 ids of provinces
  6. INFO:parameter:Load 7 ids of school types
  7. INFO:parameter:Load 19 ids of majors
  8. /home/chiennd/.local/lib/python2.7/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
  9.   "This module will be removed in 0.20.", DeprecationWarning)
  10. INFO:common.jdbc:Connecting to database
  11.     ->dbname='topica' user='ecomobi' host='localhost' port='2222' password='OD4o9ammD42'
  12. INFO:__main__:Reading data....
  13. sys:1: DtypeWarning: Columns (130,131,132,133) have mixed types. Specify dtype option on import or set low_memory=False.
  14. INFO:__main__:Finish reading data, shape of data: (100361, 137)
  15. INFO:__main__:Create extractor...
  16. ['Unnamed: 0' 'cds_id' 'label' 'mobile' 'id' 'age' 'birthday_year' 'gender'
  17.  'birthday_month' 'birthday_day' 'education' 'work' 'oid' 'address' 'email'
  18.  'first_name' 'hometown' 'locale' 'middle_name' 'last_name' 'phone'
  19.  'relationship_status' 'birth_day' 'fb_id' 'id.1' 'schools'
  20.  'highest_school_degree' 'majors' 'university' 'university_type'
  21.  'university_location' 'id.2' 'hometown_province_id' 'location_province_id'
  22.  'hometown.1' 'location' 'mobile.1' 'id.3' 'value' 'name' 'loc' 'id.4'
  23.  'value.1' 'name.1' 'loc.1' 'cds_id.1' 'email_status'
  24.  'is_email_related_name' 'is_beautiful_mobile_number' 'email.1' 'mobile.2'
  25.  'name.2' 'age_email' 'age_mobile' 'company_email' 'email_name_status'
  26.  'event_type' 'vid' 'statuscall' 'utm_id' 'nganhdk' 'trinhdo'
  27.  'registereddate' 'nganhhoc' 'location_id' 'email.2' 'diemtuyensinh'
  28.  'datelevel3a' 'datelevel3b' 'datelevel3c' 'calldate' 'schoolgrad' 'tvts'
  29.  'callamount' 'totnghiep' 'datelevel1' 'datelevel2' 'datelevel4'
  30.  'datelevel5' 'datelevel6' 'sid' 'datelevel8' 'majorname' 'age.1' 'c5'
  31.  'landing_id' 'school' 'statuscare' 'level' 'mobile.3' 'gender.1' 'notes'
  32.  'datelevel7' 'handoverdate' 'truongdk' 'fullname' 'device_id' 'isc5'
  33.  'cds_id.2' 'appointmentdate' 'sourcetype' 'keyword' 'cid' 'number_contact'
  34.  'created_at' 'c5_date' 'url_id' 'email2' 'id.5' 'sub_id' 'status'
  35.  'crm_status' '_id' 'utm_campaign' 'code_chanel' 'utm_term' 'utm_content'
  36.  'utm_source' 'utm_medium' 'utm_agent' 'utm_team' 'channel' 'cds_id.3'
  37.  'mobile_number' 'mobile_networks' '_id.1' 'landingpage_version'
  38.  'landing_page' 'mau_qc' 'san_pham' 'id_campaign' 'property_aid'
  39.  'id_camp_landingpage' 'id_landingpage' 'kenh_con' 'property_code'
  40.  'olm_onboarding']
  41. ['Unnamed: 0' 'cds_id' 'label' 'mobile' 'id' 'age' 'birthday_year' 'gender'
  42.  'birthday_month' 'birthday_day' 'education' 'work' 'oid' 'address' 'email'
  43.  'first_name' 'hometown' 'locale' 'middle_name' 'last_name' 'phone'
  44.  'relationship_status' 'birth_day' 'fb_id' 'id.1' 'schools'
  45.  'highest_school_degree' 'majors' 'university' 'university_type'
  46.  'university_location' 'id.2' 'hometown_province_id' 'location_province_id'
  47.  'hometown.1' 'location' 'mobile.1' 'id.3' 'value' 'name' 'loc' 'id.4'
  48.  'value.1' 'name.1' 'loc.1' 'cds_id.1' 'email_status'
  49.  'is_email_related_name' 'is_beautiful_mobile_number' 'email.1' 'mobile.2'
  50.  'name.2' 'age_email' 'age_mobile' 'company_email' 'email_name_status'
  51.  'event_type' 'vid' 'statuscall' 'utm_id' 'nganhdk' 'trinhdo'
  52.  'registereddate' 'nganhhoc' 'location_id' 'email.2' 'diemtuyensinh'
  53.  'datelevel3a' 'datelevel3b' 'datelevel3c' 'calldate' 'schoolgrad' 'tvts'
  54.  'callamount' 'totnghiep' 'datelevel1' 'datelevel2' 'datelevel4'
  55.  'datelevel5' 'datelevel6' 'sid' 'datelevel8' 'majorname' 'age.1' 'c5'
  56.  'landing_id' 'school' 'statuscare' 'level' 'mobile.3' 'gender.1' 'notes'
  57.  'datelevel7' 'handoverdate' 'truongdk' 'fullname' 'device_id' 'isc5'
  58.  'cds_id.2' 'appointmentdate' 'sourcetype' 'keyword' 'cid' 'number_contact'
  59.  'created_at' 'c5_date' 'url_id' 'email2' 'id.5' 'sub_id' 'status'
  60.  'crm_status' '_id' 'utm_campaign' 'code_chanel' 'utm_term' 'utm_content'
  61.  'utm_source' 'utm_medium' 'utm_agent' 'utm_team' 'channel' 'cds_id.3'
  62.  'mobile_number' 'mobile_networks' '_id.1' 'landingpage_version'
  63.  'landing_page' 'mau_qc' 'san_pham' 'id_campaign' 'property_aid'
  64.  'id_camp_landingpage' 'id_landingpage' 'kenh_con' 'property_code'
  65.  'olm_onboarding']
  66. After clean: (97279, 33)
  67. After clean: (3082, 33)
  68. ------------------------- Time 0 ---------------------------
  69. Train (90324, 33)
  70. Test (10037, 33)
  71. Number of true-predicted items: 9741
  72. Number of false-predicted items: 296
  73. Label: [ 0.  1.]
  74. True by label: [9684   57]
  75. False by label: [ 44 252]
  76. Accuracy - 0 - 1 - total: [ 0.99547697  0.18446602  0.97050912]
  77. ------------------------- Time 1 ---------------------------
  78. Train (90324, 33)
  79. Test (10037, 33)
  80. Number of true-predicted items: 9745
  81. Number of false-predicted items: 292
  82. Label: [ 0.  1.]
  83. True by label: [9690   55]
  84. False by label: [ 38 254]
  85. Accuracy - 0 - 1 - total: [ 0.99609375  0.17799353  0.97090764]
  86. ------------------------- Time 2 ---------------------------
  87. Train (90325, 33)
  88. Test (10036, 33)
  89. Number of true-predicted items: 9757
  90. Number of false-predicted items: 279
  91. Label: [ 0.  1.]
  92. True by label: [9700   57]
  93. False by label: [ 28 251]
  94. Accuracy - 0 - 1 - total: [ 0.99712171  0.18506494  0.97220008]
  95. ------------------------- Time 3 ---------------------------
  96. Train (90325, 33)
  97. Test (10036, 33)
  98. Number of true-predicted items: 9749
  99. Number of false-predicted items: 287
  100. Label: [ 0.  1.]
  101. True by label: [9689   60]
  102. False by label: [ 39 248]
  103. Accuracy - 0 - 1 - total: [ 0.99599095  0.19480519  0.97140295]
  104. ------------------------- Time 4 ---------------------------
  105. Train (90325, 33)
  106. Test (10036, 33)
  107. Number of true-predicted items: 9740
  108. Number of false-predicted items: 296
  109. Label: [ 0.  1.]
  110. True by label: [9694   46]
  111. False by label: [ 34 262]
  112. Accuracy - 0 - 1 - total: [ 0.99650493  0.14935065  0.97050618]
  113. ------------------------- Time 5 ---------------------------
  114. Train (90325, 33)
  115. Test (10036, 33)
  116. Number of true-predicted items: 9754
  117. Number of false-predicted items: 282
  118. Label: [ 0.  1.]
  119. True by label: [9700   54]
  120. False by label: [ 28 254]
  121. Accuracy - 0 - 1 - total: [ 0.99712171  0.17532468  0.97190116]
  122. ------------------------- Time 6 ---------------------------
  123. Train (90325, 33)
  124. Test (10036, 33)
  125. Number of true-predicted items: 9752
  126. Number of false-predicted items: 284
  127. Label: [ 0.  1.]
  128. True by label: [9704   48]
  129. False by label: [ 24 260]
  130. Accuracy - 0 - 1 - total: [ 0.99753289  0.15584416  0.97170187]
  131. ------------------------- Time 7 ---------------------------
  132. Train (90325, 33)
  133. Test (10036, 33)
  134. Number of true-predicted items: 9763
  135. Number of false-predicted items: 273
  136. Label: [ 0.  1.]
  137. True by label: [9701   62]
  138. False by label: [ 27 246]
  139. Accuracy - 0 - 1 - total: [ 0.99722451  0.2012987   0.97279793]
  140. ------------------------- Time 8 ---------------------------
  141. Train (90325, 33)
  142. Test (10036, 33)
  143. Number of true-predicted items: 9741
  144. Number of false-predicted items: 295
  145. Label: [ 0.  1.]
  146. True by label: [9692   49]
  147. False by label: [ 36 259]
  148. Accuracy - 0 - 1 - total: [ 0.99629934  0.15909091  0.97060582]
  149. ------------------------- Time 9 ---------------------------
  150. Train (90326, 33)
  151. Test (10035, 33)
  152. Number of true-predicted items: 9759
  153. Number of false-predicted items: 276
  154. Label: [ 0.  1.]
  155. True by label: [9693   66]
  156. False by label: [ 34 242]
  157. Accuracy - 0 - 1 - total: [ 0.99650457  0.21428571  0.97249626]
  158. [array([ 0.99547697,  0.18446602,  0.97050912]), array([ 0.99609375,  0.17799353,  0.97090764]), array([ 0.99712171,  0.18506494,  0.97220008]), array([ 0.99599095,  0.19480519,  0.97140295]), array([ 0.99650493,  0.14935065,  0.97050618]), array([ 0.99712171,  0.17532468,  0.97190116]), array([ 0.99753289,  0.15584416,  0.97170187]), array([ 0.99722451,  0.2012987 ,  0.97279793]), array([ 0.99629934,  0.15909091,  0.97060582]), array([ 0.99650457,  0.21428571,  0.97249626])]
  159. Final [ 0.99658714  0.17975245  0.9715029 ]
  160.  
  161. Process finished with exit code 0
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top