Guest User

Untitled

a guest
Jan 31st, 2023
62
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 3.29 KB | None | 0 0
  1. import numpy as np
  2. #import matplotlib.pyplot as plt
  3. import pandas as pd
  4. import math
  5.  
  6. def debug(y):
  7.     print(y)
  8.     exit()
  9.  
  10. data = pd.read_csv('/content/drive/MyDrive/train.csv') #add file path //C:
  11. data_test = pd.read_csv('/content/drive/MyDrive/test.csv') #add file path
  12. rawData = np.asarray(data_test)
  13.  
  14. x_test = []
  15.  
  16. def convert(x):
  17.     if (x == 'S'): return 1
  18.     elif (x == 'Q'): return 2
  19.     return 3
  20.  
  21. for i in range(0,len(rawData)):
  22.     x_test.append([])
  23.     x_test[i].append(rawData[i][1])
  24.    
  25.     if (rawData[i][3] == 'male'): x_test[i].append(1)
  26.     else: x_test[i].append(0)
  27.     #x_test[i].append(rawData[i][3])
  28.  
  29.     if (math.isnan(rawData[i][4])): x_test[i].append(80)
  30.     else: x_test[i].append(rawData[i][4])
  31.  
  32.     x_test[i].append(rawData[i][5])
  33.     x_test[i].append(rawData[i][6])
  34.     x_test[i].append(rawData[i][8])
  35.  
  36.     x_test[i].append(convert(rawData[i][10]))
  37.  
  38. x_test = np.asarray(x_test)
  39.  
  40. x_train = []
  41. y_train = []
  42.  
  43. survive = np.asarray(data.Survived);
  44. for i in range (0,891):
  45.     x_train.append([])
  46.     y_train.append(np.array([survive[i]]))
  47.  
  48. def Add_To_X(a):
  49.     for i in range(0,len(a)): x_train[i].append(a[i])
  50.  
  51. pclass = np.asarray(data.Pclass)
  52. Add_To_X(pclass)
  53.  
  54. gender = np.asarray(data.Sex)
  55. for i in range(0,len(gender)):
  56.     if gender[i] == 'male': x_train[i].append(1)
  57.     else: x_train[i].append(0)
  58.  
  59. age = np.asarray(data.Age)
  60. Add_To_X(age)
  61.  
  62. SibSp = np.asarray(data.SibSp)
  63. Add_To_X(SibSp)
  64.  
  65. Parch = np.asarray(data.Parch)
  66. Add_To_X(Parch)
  67.  
  68. fare = np.asarray(data.Fare)
  69. Add_To_X(fare)
  70.  
  71. embark = np.asarray(data.Embarked)
  72. for i in range (0,891):
  73.     if (embark[i] == 'S'): x_train[i].append(1)
  74.     elif (embark[i] == 'Q'): x_train[i].append(2)
  75.     else: x_train[i].append(3)
  76.  
  77. for i in range (0,len(x_train)):
  78.     if (math.isnan(x_train[i][2])): x_train[i][2] = 80
  79.  
  80. x_train = np.asarray(x_train)
  81. y_train = np.asarray(y_train)
  82.  
  83. import numpy as np
  84. import tensorflow as tf
  85. from tensorflow.keras.models import Sequential
  86. from tensorflow.keras.layers import Dense
  87. import matplotlib.pyplot as plt
  88. import logging
  89.  
  90. print(x_train.shape)
  91. print(x_test.shape)
  92. exit()
  93.  
  94. def my_leaky_relu(x):
  95.     return tf.nn.leaky_relu(x, alpha=0.003)
  96.  
  97. model = Sequential([
  98.     Dense(units = 15,activation = 'relu'),
  99.     Dense(units = 25,activation = 'sigmoid'),
  100.     Dense(units = 50,activation = 'relu'),
  101.     Dense(units = 70,activation = 'sigmoid'),
  102.     Dense(units = 70,activation = 'relu'),
  103.     Dense(units = 70,activation = 'sigmoid'),
  104.     Dense(units = 70,activation = 'relu'),
  105.     Dense(units = 50,activation = 'sigmoid'),
  106.     Dense(units = 25,activation = 'relu'),
  107.     Dense(units = 15,activation = 'sigmoid'),
  108.     Dense(units = 1,activation = 'sigmoid')
  109. ])
  110.  
  111. model.compile(
  112.     loss=tf.keras.losses.BinaryCrossentropy(),
  113.     #optimizer=tf.keras.optimizers.Adam(0.001),
  114. )
  115. model.fit(x_train,y_train,epochs = 1000)
  116.  
  117. prediction = model.predict(x_test)
  118. for i in range (0,len(prediction)):
  119.     if (prediction[i] >= 0.5): prediction[i] = 1
  120.     else: prediction[i] = 0
  121.  
  122. #print(prediction[0][0])
  123.  
  124. total = []
  125. for i in range (0,len(prediction)):
  126.     now = []
  127.     now.append(892 + i)
  128.     if (prediction[i][0] == 0): now.append(0)
  129.     else: now.append(1)
  130.     total.append(now)
  131.  
  132. #print(total[0])
  133.  
  134. df = pd.DataFrame(total)
  135. df.to_csv('ans.csv')
  136.  
Add Comment
Please, Sign In to add comment