Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- #import matplotlib.pyplot as plt
- import pandas as pd
- import math
- def debug(y):
- print(y)
- exit()
- data = pd.read_csv('/content/drive/MyDrive/train.csv') #add file path //C:
- data_test = pd.read_csv('/content/drive/MyDrive/test.csv') #add file path
- rawData = np.asarray(data_test)
- x_test = []
- def convert(x):
- if (x == 'S'): return 1
- elif (x == 'Q'): return 2
- return 3
- for i in range(0,len(rawData)):
- x_test.append([])
- x_test[i].append(rawData[i][1])
- if (rawData[i][3] == 'male'): x_test[i].append(1)
- else: x_test[i].append(0)
- #x_test[i].append(rawData[i][3])
- if (math.isnan(rawData[i][4])): x_test[i].append(80)
- else: x_test[i].append(rawData[i][4])
- x_test[i].append(rawData[i][5])
- x_test[i].append(rawData[i][6])
- x_test[i].append(rawData[i][8])
- x_test[i].append(convert(rawData[i][10]))
- x_test = np.asarray(x_test)
- x_train = []
- y_train = []
- survive = np.asarray(data.Survived);
- for i in range (0,891):
- x_train.append([])
- y_train.append(np.array([survive[i]]))
- def Add_To_X(a):
- for i in range(0,len(a)): x_train[i].append(a[i])
- pclass = np.asarray(data.Pclass)
- Add_To_X(pclass)
- gender = np.asarray(data.Sex)
- for i in range(0,len(gender)):
- if gender[i] == 'male': x_train[i].append(1)
- else: x_train[i].append(0)
- age = np.asarray(data.Age)
- Add_To_X(age)
- SibSp = np.asarray(data.SibSp)
- Add_To_X(SibSp)
- Parch = np.asarray(data.Parch)
- Add_To_X(Parch)
- fare = np.asarray(data.Fare)
- Add_To_X(fare)
- embark = np.asarray(data.Embarked)
- for i in range (0,891):
- if (embark[i] == 'S'): x_train[i].append(1)
- elif (embark[i] == 'Q'): x_train[i].append(2)
- else: x_train[i].append(3)
- for i in range (0,len(x_train)):
- if (math.isnan(x_train[i][2])): x_train[i][2] = 80
- x_train = np.asarray(x_train)
- y_train = np.asarray(y_train)
- import numpy as np
- import tensorflow as tf
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import Dense
- import matplotlib.pyplot as plt
- import logging
- print(x_train.shape)
- print(x_test.shape)
- exit()
- def my_leaky_relu(x):
- return tf.nn.leaky_relu(x, alpha=0.003)
- model = Sequential([
- Dense(units = 15,activation = 'relu'),
- Dense(units = 25,activation = 'sigmoid'),
- Dense(units = 50,activation = 'relu'),
- Dense(units = 70,activation = 'sigmoid'),
- Dense(units = 70,activation = 'relu'),
- Dense(units = 70,activation = 'sigmoid'),
- Dense(units = 70,activation = 'relu'),
- Dense(units = 50,activation = 'sigmoid'),
- Dense(units = 25,activation = 'relu'),
- Dense(units = 15,activation = 'sigmoid'),
- Dense(units = 1,activation = 'sigmoid')
- ])
- model.compile(
- loss=tf.keras.losses.BinaryCrossentropy(),
- #optimizer=tf.keras.optimizers.Adam(0.001),
- )
- model.fit(x_train,y_train,epochs = 1000)
- prediction = model.predict(x_test)
- for i in range (0,len(prediction)):
- if (prediction[i] >= 0.5): prediction[i] = 1
- else: prediction[i] = 0
- #print(prediction[0][0])
- total = []
- for i in range (0,len(prediction)):
- now = []
- now.append(892 + i)
- if (prediction[i][0] == 0): now.append(0)
- else: now.append(1)
- total.append(now)
- #print(total[0])
- df = pd.DataFrame(total)
- df.to_csv('ans.csv')
Add Comment
Please, Sign In to add comment