Advertisement
Guest User

Untitled

a guest
Jun 20th, 2019
109
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.18 KB | None | 0 0
  1. documentclass[avery5388,grid,frame]{flashcards}
  2.  
  3. cardfrontstyle[largeslshape]{headings}
  4. cardbackstyle{empty}
  5.  
  6. %The notable stuff starts here
  7. usepackage{tikz}
  8. usepackage{background}
  9. usetikzlibrary{patterns}
  10. backgroundsetup{%
  11. opacity=.2, %% Play with this to increase/decrease readability
  12. contents={begin{tikzpicture}[remember picture,overlay]
  13. fill[pattern = crosshatch] (-50,-50) rectangle (50,50); %% yshift and xshift for example only
  14. end{tikzpicture}}
  15. }
  16. %%%%%% And ends here
  17.  
  18.  
  19. begin{document}
  20.  
  21. cardfrontfoot{Functional Analysis}
  22.  
  23. begin{flashcard}[Definition]{Norm on a Linear Space \ Normed Space}
  24. A real-valued function $||x||$ defined on a linear space $X$, where15$x in X$, is said to be a emph{norm on} $X$ if
  25. smallskip
  26. begin{description}
  27. item [Positivity] $||x|| geq 0$,
  28. item [Triangle Inequality] $||x+y|| leq ||x|| + ||y||$,
  29. item [Homogeneity] $||alpha x|| = |alpha| : ||x||$,
  30. $alpha$ an arbitrary scalar,
  31. item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$,
  32. end{description}
  33. smallskip
  34. $x$ and $y$ are arbitrary points in $X$.
  35. medskip
  36. linear/vector space with a norm is called a emph{normed space}.
  37. end{flashcard}
  38.  
  39. begin{flashcard}[Definition]{Inner Product}
  40. $X$ be a complex linear space. An emph{inner product} on $X$ is
  41. a mapping that associates to each pair of vectors $x$, $y$ a scalar,
  42. denoted $(x,y)$, that satisfies the following properties:
  43. medskip
  44. begin{description}
  45. item [Additivity] $(x+y,z) = (x,z) + (y,z)$,
  46. item [Homogeneity] $(alpha : x, y) = alpha (x,y)$,
  47. item [Symmetry] $(x,y) = overline{(y,x)}$,
  48. item [Positive Definiteness] $(x,x) > 0$, when $xneq0$.
  49. end{description}
  50. end{flashcard}
  51.  
  52. begin{flashcard}[Definition]{Linear Transformation/Operator}
  53. Atransformation $L$ of (operator on) a linear space $X$ into a linear
  54. space $Y$, where $X$ and $Y$ have the same scalar field, is said to be
  55. a emph{linear transformation (operator)} if
  56. medskip
  57. begin{enumerate}
  58. item $L(alpha x) = alpha L(x), forall xin X$ and $forall$
  59. scalars $alpha$, and
  60. item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 in X$.5
  61. end{enumerate}
  62. end{flashcard}
  63. end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement