import pandas as pd # Check for all elements in the column "origin" whether they are equal to "europe" mask1 = cars.origin == 'europe' mask1.all() mask2 = df.Country == 'ARG' mask2.any() ######################################################### df.loc[:,'Order_ID'] mask1 = df.Sport == "Volleyball" df.loc[mask1] ######################################################### mask1 = df['genres'].str.contains('Science Fiction') mask2 = df['genres'].str.contains('Action') mask3 = df['cast'].str.contains('Bruce Willis') df.loc[mask1 & mask2 & mask3, ['title', 'genres', 'cast', 'vote_average']].sort_values(by=['vote_average'],ascending = False) ########################################################### # Filter by Date mask1 = df['release_date'].dt.date.astype(str) >= '2010' mask2 = df['release_date'].dt.date.astype(str) <= '2015' mask3 = df['production_companies'].str.contains('Pixar') df.loc[mask1 & mask2 & mask3].sort_values(by=['revenue_musd'], ascending = False) mask4 = df.release_date.between(1960, 1969, inclusive = 'both') df.loc[mask4] mask5 = df.release_date.isin([1960,1961,1962,1964]) # isin df.loc[mask5] mask6 = df.release_date >= 1992 df.loc[mask6] df.loc[~mask6] ########################################################## # Filter by many conditions mask1 = df['genres'].str.contains('Action') mask2 = df['genres'].str.contains('Thriller') mask3 = df['spoken_languages'].str.contains('English') df.loc[df['vote_average'] >= 7.5].loc[(mask1 | mask2) & mask3].sort_values(by=['release_date'], ascending = False) mask1 = df.Country.isin(["ITA", "FRA", "ESP", "USA"]) df.loc[mask1] ############################################################### mask1 = titanic.sex == male mask2 = titanic.dtypes == object titanic.loc[:, ~mask2] # gen only non object values (numeric) titanic.loc[mask1,~maks2] # only males with numeric data male_survived = titanic.loc[mask1 & mask2, :] titanic.loc[mask1 | mask2, ['sex','survived']] ########################################################### df_auto = df_auto.loc[df_auto.Kilometes > 1111] df_auto = df_auto.loc[df_auto['Years Automobile'] > 0)] titanic.loc[titanic.sex=="Male", Age] # get only Age column ########################################################### index_babies = titanic.loc[titanic.age < 1, 'age'].index titanic.loc[titanic.age < 1, 'age'] = 1 # where age < 1 changed the value to 1 titanic.loc[index_babies] # how to check the result ############################################################ not_73_74 = cars.loc[~cars.model_year.isin ([73,74]), ['mpg', 'name']] # not