n = 10; dy = 10; ss = Table[s, {s, 0.1, 2, 0.1}]; d[s_, t_, e_] := (s EllipticE[ ArcTan[s Tan[2 Pi t]] + Floor[4 t] Pi - Floor[2 t] Pi, e]); frame[t_] := (Show[{ Table[ Module[{l, e}, e = 1 - 1/s^2; l = 4 s EllipticE[e]; ParametricPlot[ { {d[s, t, e] \[Theta]/(2 Pi), dy s}, {Cos[\[Theta]] Sin[2 \[Pi] t] + s Cos[2 \[Pi] t] Sin[\[Theta]], Cos[2 \[Pi] t] Cos[\[Theta]] - s Sin[2 \[Pi] t] Sin[\[Theta]]} + { d[s, t, e] - ((s^2 - 1) Sin[2 \[Pi] t] Sign[Cos[2 Pi t]])/Sqrt[ 1 + s^2 Tan[2 \[Pi] t]^2], Abs[Cos[2 \[Pi] t]] Sqrt[1 + s^2 Tan[2 \[Pi] t]^2] + dy s} }, {\[Theta], 0, 2 Pi}, Axes -> None, PlotStyle -> If[s == 1, Red]] ] , {s, ss}], Graphics[{ Line[{{0, 0}, {0, 22}}], { Module[{ps}, ps = Table[{d[s, t, 1 - 1/s^2], dy s}, {s, ss}]; {Point[ps], Darker@Red, Thick, Line[ps]} ], Opacity[0.4], Table[{ Line[{{0, dy s}, {7, dy s}}]} , {s, ss}] }}] } , PlotRange -> {{-2.1, 12}, {0, 24}}, ImageSize -> 300] ); Manipulate[ frame[t], {t, 0, 1}]