\documentclass[12pt]{article} \title{Electrolysis of Water and Aqueous Solutions} \author{Carlo Abelli \\ AP Chemistry --- Mr.\ Kern} \date{February 19, 2015} \usepackage[margin=1.0in]{geometry} \begin{document} \begin{titlepage} \maketitle \thispagestyle{empty} \end{titlepage} \section{Water Electrolysis Calculations and Questions} \subsection{Half Reaction for Each Electrode} Cathode (reduction): \(2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}\)\\ This reaction took place at the cathode because during the splint test the gas produced a popping sound, characteristic of hydrogen, a highly flammable gas. \\ \\ Anode (oxidation): \(2H_{2}O_{(l)} \rightarrow O_{2(g)} + 4H^{+}_{(aq)} + 4e^{-}\)\\ This reaction took place at the anode because during the splint test the gas reignited the splint ember, characteristic of oxygen. \subsection{Overall Reaction} \(2H_{2}O_{(l)} \rightarrow 2H_{2(g)} + O_{2(g)}\) \subsection{Average Current} Average Current: \(\frac{0.44 + 0.43 + 0.44 + 0.44 + 0.45 + 0.46 + 0.45 + 0.46 + 0.46 + 0.45 + 0.45 + 0.46 + 0.45 + 0.47 + 0.46}{15} = 0.45\) \subsection{Amount of Hydrogen Produced in One Hour} \(\frac{0.45\ coulombs}{1.00\ \sec} * \frac{60.0\ \sec}{1.00\ \min} * \frac{60.0\ \min}{1.00\ hour} * \frac{1.00\ e^{-}}{1.60*10^{-19}\ coulombs} * \frac{1.00\ mol\ e^{-}}{6.022*10^{23}\ e^{-}} * \frac{1.00\ mol\ H_{2}} {2.00\ mol\ e^{-}} = 0.0084\ mol\ H_{2}\)\\ \(0.0084\ mol\ H_{2} * 22.4\ L/mol = 0.19\ L\ H_{2}\)\\ \(0.0084\ mol\ H_{2} * 2.016\ g/mol = 0.0017\ g\ H_{2}\) \subsection{Amount of Time Needed to Produce 30 mL Oxygen Gas at 22\(^{\circ}\)C and 1.00 atm} \(1.00\ atm * 0.030\ L = n * 0.08206\ L\ atm\ K^{-1}\ mol^{-1} * 295\ K\)\\ \(n = 0.0012\ mol\ O_{2}\)\\ \(0.0012\ mol\ O_{2} * \frac{4.00\ mol\ e^{-}}{1.00\ mol\ O_{2}} * \frac{6.022*10^{23}\ e^{-}}{1.00\ mol\ e^{-}} * \frac{1.60*10^{-19}\ coulombs}{1\ e^{-}} * \frac{1.00\ \sec}{0.45\ coulombs} = 100.\ \sec\) \subsection{Moles of Gas Produced in Experiment} Cathode (Hydrogen)\\ \(P_{container} = 36.8\ cm\ H_{2}O * \frac{10.0\ mm}{1.00\ cm} * \frac{1.08\ g\ H_{2}O} {1\ mL\ H_{2}O} * \frac{1\ mL\ Hg} {13.534\ g\ Hg} + 751.1\ mm\ Hg = 780.5\ mm\ Hg\)\\ \(P_{gas} = P_{container} - P_{H_{2}O}\)\\ \(P_{gas} = 780.5\ mm\ Hg - 18.7\ mm\ Hg = 761.8\ mm\ Hg\)\\ \(761.8\ mm\ Hg * 0.0486\ L = n * 62.363\ L\ mmHg\ K^{-1}\ mol^{-1} * 294.0\ K\) \\ \(n = 0.00202\ mol\ H_{2}\)\\ \\ Anode (Oxygen)\\ \(P_{container} = 24.0\ cm\ H_{2}O * \frac{10.0\ mm}{1.00\ cm} * \frac{1.08\ g\ H_{2}O} {1\ mL\ H_{2}O} * \frac{1\ mL\ Hg} {13.534\ g\ Hg} + 751.1\ mm\ Hg = 770.3\ mm\ Hg\)\\ \(P_{gas} = P_{container} - P_{H_{2}O}\)\\ \(P_{gas} = 770.3\ mm\ Hg - 18.7\ mm\ Hg = 751.6\ mm\ Hg\)\\ \(751.6\ mm\ Hg * 0.0239\ L = n * 62.363\ L\ mmHg\ K^{-1}\ mol^{-1} * 294.0\ K\) \\ \(n = 0.000980\ mol\ O_{2}\) \subsection{Theoretical Moles of Gas Produced} Cathode (Hydrogen)\\ \(\frac{0.45\ coulombs}{1.00\ \sec} * \frac{60.0\ \sec}{1.00\ \min} * 14.0\ \min * \frac{1.00\ e^{-}}{1.60*10^{-19}\ coulombs} * \frac{1.00\ mol\ e^{-}} {6.022*10^{23}\ e^{-}} * \frac{1.00\ mol\ H_{2}}{2.00\ mol\ e^{-}} = 0.0020\ mol\ H_{2}\)\\ \\ Anode (Oxygen)\\ \(\frac{0.45\ coulombs}{1.00\ \sec} * \frac{60.0\ \sec}{1.00\ \min} * 14.0\ \min * \frac{1.00\ e^{-}}{1.60*10^{-19}\ coulombs} * \frac{1.00\ mol\ e^{-}} {6.022*10^{23}\ e^{-}} * \frac{1.00\ mol\ O_{2}}{4.00\ mol\ e^{-}} = 0.00098\ mol\ O_{2}\) \subsection{Percent Deviation} Cathode (Hydrogen)\\ \(\frac{0.00202\ mol - 0.0020\ mol}{0.0020\ mol} * 100 = 0.0\%\ deviation\)\\ \\ Anode (Oxygen)\\ \(\frac{0.000980\ mol - 0.00098\ mol}{0.00098\ mol} * 100 = 0.0\%\ deviation\) \section{Aqueous KI, KBr and KCl Electrolysis Calculations and Questions} \subsection{Half Reactions for Each Electrode} \begin{tabular}{ l r @{\(\rightarrow\)} l } KI Solution\\ Cathode (reduction): & \(2H_{2}O_{(l)} + 2e^{-}\) & \(2OH^{-}_{(aq)} + H_{2(g)}\)\\ Anode (oxidation): & \(2I^{-}_{(aq)}\) & \(I_{2(s)} + 2e^{-}\)\\ \\ KBr Solution\\ Cathode (reduction): & \(2H_{2}O_{(l)} + 2e^{-}\) & \(2OH^{-}_{(aq)} + H_{2(g)}\)\\ Anode (oxidation): & \(2Br^{-}_{(aq)}\) & \(Br_{2(l)} + 2e^{-}\)\\ \\ KCl Solution\\ Cathode (reduction): & \(2H_{2}O_{(l)} + 2e^{-}\) & \(2OH^{-}_{(aq)} + H_{2(g)}\)\\ Anode (oxidation): & \(2Cl^{-}_{(aq)}\) & \(Cl_{2(g)} + 2e^{-}\)\\ \end{tabular}\\ \\ The water half reaction had to have occurred at the cathode because the phenolphthalein indicator was activated by the creation of \(OH^{-}\), creating the purple color observed at the cathode.\\ \\ The iodine, chlorine and bromine half reactions had to have occurred at the anode because in the first experiment, a dark solid was created at the anode (iodine), in the second experiment, a yellow liquid was observed (bromine) and in the third experiment, a chlorine smelling gas was produced (chlorine). \subsection{Overall Equations} \begin{tabular}{ l r @{\(\rightarrow\)} l } KI Solution: & \(KI_{(aq)} + 2H_{2}O_{(l)}\) & \(KOH_{(aq)} + 2H_{2(g)} + I_{2(s)}\)\\ KBr Solution: & \(KBr_{(aq)} + 2H_{2}O_{(l)}\) & \(KOH_{(aq)} + 2H_{2(g)} + Br_{2(l)}\)\\ KCl Solution: & \(KCl_{(aq)} + 2H_{2}O_{(l)}\) & \(KOH_{(aq)} + 2H_{2(g)} + Cl_{2(g)}\)\\ Test Solution: \end{tabular} \subsection{Half Reactions and Overall Equation for Molten KI, KBr and KCl} KI\\ \begin{tabular}{ l r @{\(\rightarrow\)} l } Cathode (reduction): & \(K^{+}_{(l)} + e^{-}\) & \(K_{(s)}\)\\ Anode (oxidation): & \(2I^{-}_{(l)}\) & \(I_{2(s)} + 2e^{-}\)\\ Overall Equation: & \(2KI_{(l)}\) & \(2K_{(s)} + I_{2(s)}\)\\ \end{tabular}\\ \\ KBr\\ \begin{tabular}{ l r @{\(\rightarrow\)} l } Cathode (reduction): & \(K^{+}_{(l)} + e^{-}\) & \(K_{(s)}\)\\ Anode (oxidation): & \(2Br^{-}_{(l)}\) & \(Br_{2(l)} + 2e^{-}\)\\ Overall Equation: & \(2KBr_{(l)}\) & \(2K_{(s)} + Br_{2(s)}\)\\ \end{tabular}\\ \\ KCl\\ \begin{tabular}{ l r @{\(\rightarrow\)} l } Cathode (reduction): & \(K^{+}_{(l)} + e^{-}\) & \(K_{(s)}\)\\ Anode (oxidation): & \(2Cl^{-}_{(l)}\) & \(Cl_{2(g)} + 2e^{-}\)\\ Overall Equation: & \(2KCl_{(l)}\) & \(2K_{(s)} + Cl_{2(g)}\)\\ \end{tabular} \subsection{Time Required to Produce 1.25 g Iodine at 0.75 amps} \(1.25\ g\ I_{2} * \frac{1.00\ mol\ I_{2}}{253.80\ g} * \frac{2.00\ mol\ e^{-}}{1.00\ mol\ I_{2}} * \frac{6.022*10^{23}\ e^{-}}{1.00\ mol\ e^{-}} * \frac{1.60*10^{-19}\ coulombs}{1.00\ e^{-}} * \frac{1.00\ \sec}{0.75\ coulombs} * \frac{1.00\ \min}{60.0\ \sec} = 21\ \min\) \subsection{Time Required to Produce 0.100 L Hydrogen gas in Lab Conditions at 0.75 amps} \(751.1\ mmHg * 0.100\ L\ H_{2} = n * 62.363\ L\ mmHg\ K^{-1}\ mol^{-1} * 294\ K\)\\ \(n = 0.00410\ mol\)\\ \(0.00410\ mol\ H_{2} * \frac{2.00\ mol\ e^{-}}{1.00\ mol\ H_{2}} * \frac{6.022*10^{23}\ e^{-}}{1.00\ mol\ e^{-}} * \frac{1.60*10^{-19}\ coulombs}{1.00\ e^{-}} * \frac{1.00\ \sec}{0.75\ coulombs} * \frac{1.00\ \min}{60.0\ \sec} = 18\ \min\) \end{document}