> sinks <- raster("rasterized.tif") > tpi <- raster("TPI.tif") > model <- glm(sinks[]~tpi[], family= binomial) > summary(model) Call: glm(formula = sinks[] ~ tpi[], family = binomial) Deviance Residuals: Min 1Q Median 3Q Max -0.5368 -0.3780 -0.3774 -0.3766 2.3877 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -2.606015 0.001022 -2551.117 <2e-16 *** tpi[] -0.321924 0.038967 -8.261 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 7496150 on 14968071 degrees of freedom Residual deviance: 7496082 on 14968070 degrees of freedom (15480 observations deleted due to missingness) AIC: 7496086 Number of Fisher Scoring iterations: 5} >test <- raster("tpi_test.tif") > predict(test, model, type="response") Error in p[-naind, ] <- predv : number of items to replace is not a multiple of replacement length In addition: Warning message: 'newdata' had 690549 rows but variables found have 14983552 rows