red_car_mass := 251.8~0.05 "CAR 1" blue_car_mass := 254.0~0.05 "CAR 2" m1_mass := 252.4~0.05 m2_mass := 254.2~0.05 slopes := [0.0186~0.00015, 0.0213~0.00025, 0.0259~0.00024, 0.0187~0.00069, 0.0225~0.00025] define extract_column(matrix, col) as column := [] for row in matrix loop column | row[col] end loop return column end extract_column define extract_columns(matrices, col) as return ((x) -> extract_column(x, col))`(matrices) end extract_columns define flatten(matrix) as result := [] for set in matrix loop result.extend(set) end loop return result end flatten define sum(x, y) as return x + y end sum define sums(x, y) as return sum`(x, y) end sums print("The standard deviation of our measurements is:", std(slopes)) "=== Elastic data ===" "[beginning_pos, cart2_v_at, cart1_v_after, cart2_v_after]" elastic_collisions_data_massless := [ [1.6, 0.312249, -0.289780, -0.005616], [2.070, 0.343593, -0.323470, -0.002712], [1.94, 0.365498, -0.313415, -0.001286], [1.26, 0.688140, -0.708082, 0.008666], [2.04, 0.205810, -0.186434, -0.011421] ] "[beginning_pos, cart2_v_at, cart1_v_after, cart2_v_after]" elastic_collisions_data_massed := [ [1.3, 0.338302, -0.330059, -0.003630], [0.860, 0.383199, -0.34254, 0.001001], [1.260, 0.260496, -0.256836, -0.006353], [1.270, 0.472937, -0.460785, -0.002867], [1.260, 0.574692, -0.559910, 0.0001650842] ] "[beginning_pos, cart2_v_at, cart1_v_after, cart2_v_after]" elastic_collisions_data_c1m1 := [ [1.26, 0.447398, -0.284034, -0.14181], [1.08, 0.443326, -0.272659, -0.134786], [1.34, 0.435538, -0.266906, -0.146262], [1.4, 0.376664, -0.244017, -0.118208] ] "[beginning_pos, cart2_v_at, cart1_v_after, cart2_v_after]" elastic_collisions_data_c1m2 := [ [1.7, 0.596225, -0.289686, -0.300989], [0.7, 0.59995, -0.278186, -0.267378], [0.68, 0.785811, -0.370249, -0.351386], [1.72, 0.492266, -0.220981, -0.233584] ] "[beginning_pos, cart2_v_at, cart1_v_after, cart2_v_after]" elastic_collisions_data_c2m1 := [ [0.71, 0.302166, -0.41089, 0.089709], [1.640, 0.220673, -0.300117, 0.061775], [0.880, 0.307913, -0.418068, 0.100391], [0.580, 0.35472, -0.446097, 0.117493] ] "[beginning_pos, cart2_v_at, cart1_v_after, cart2_v_after]" elastic_collisions_data_c2m2 := [ [1.32, 0.197016, -0.268901, 0.083176], [1.19, 0.26225, -0.321149, 0.111764], [1.46, 0.229498, -0.303468, 0.094574], [1.33, 0.203483, -0.286996, 0.086106] ] "=== Inelastic data ===" "[beginning_pos, cart2_v_at, cart1_v_after]" inelastic_collisions_data_massless := [ [1.43, 0.392352, -0.196709], [1.35, 0.496739, -0.241296], [1.08, 0.69781, -0.337878], [1.03, 0.489847, -0.239846] ] "[beginning_pos, cart2_v_at, cart1_v_after]" inelastic_collisions_data_c1m1 := [ [0.960, 0.588607, -0.202218], [1.88, 0.407084, -0.14504], [1.14, 0.580273, -0.189352] ] "[beginning_pos, cart2_v_at, cart1_v_after]" inelastic_collisions_data_c1m2 := [ [0.96, 0.851525, -0.132017], [2.28, 0.558863, -0.136012], [2.1, 0.632977, -0.153357] ] "[beginning_pos, cart2_v_at, cart1_v_after]" inelastic_collisions_data_c2m1 := [ [2.08, 0.442954, -0.294568], [2.56, 0.47818, -0.306290], [1.26, 0.460557, -0.315441] ] "[beginning_pos, cart2_v_at, cart1_v_after]" inelastic_collisions_data_c2m2 := [ [1.84, 0.56718, -0.393595], [1.78, 0.413264, -0.31968], [1.74, 0.492195, -0.38198] ] all_data := [ elastic_collisions_data_massless, elastic_collisions_data_c1m1, elastic_collisions_data_c1m2, elastic_collisions_data_c2m1, elastic_collisions_data_c2m2, inelastic_collisions_data_massless, inelastic_collisions_data_c1m1, inelastic_collisions_data_c1m2, inelastic_collisions_data_c2m1, inelastic_collisions_data_c2m2 ] define calc_kinetic(mass, velocity) as return 0.5 * mass * velocity ^ 2 end calc_kinetic define calc_momentum(mass, velocity) as return mass * velocity end calc_momentum define negate_car1v(list) as for row in list loop row[2] := -1 * row[2] end loop end negate_car1v "Since the sensors were in different directions, we needed to negate one of them" "We chose to negate the one pointing towards car 1" negate_car1v`(all_data) from physics_utils.graph import SimpleGraph, show "From the velocities of the carts, calculate the momenta and kinetic energies. Plot the total kinetic energy before the" "collision vs the total kinetic energy after collision. Is kinetic energy conserved (i.e. is the collision 'elastic')?" "What slope would this correspond to? Also, plot the momenta before collision vs momenta after the" "collision. Is momentum conserved?" elastic_datasets := [ elastic_collisions_data_massless, elastic_collisions_data_c1m1, elastic_collisions_data_c1m2, elastic_collisions_data_c2m1, elastic_collisions_data_c2m2 ] elastic_masses_c1 := [ red_car_mass, red_car_mass + m1_mass, red_car_mass + m1_mass + m2_mass, red_car_mass, red_car_mass ] elastic_masses_c2 := [ blue_car_mass, blue_car_mass, blue_car_mass, blue_car_mass + m1_mass, blue_car_mass + m1_mass + m2_mass ] elastic_c1_velocities_after := extract_columns(elastic_datasets, 2) elastic_c2_velocities_before := extract_columns(elastic_datasets, 1) elastic_c2_velocities_after := extract_columns(elastic_datasets, 3) "First, let's calculate the momenta for each dataset:" print() define calc_momenta_on_dataset(mass, velocities) as return ((x) -> calc_momentum(mass, x))`(velocities) end calc_momenta_on_dataset cart1_momenta_after := calc_momentum**(*elastic_masses_c1, **elastic_c1_velocities_after) cart2_momenta_before := calc_momentum**(*elastic_masses_c2, **elastic_c2_velocities_before) cart2_momenta_after := calc_momentum**(*elastic_masses_c2, **elastic_c2_velocities_after) total_momenta_before := cart2_momenta_before total_momenta_after := sums`(cart2_momenta_after, cart1_momenta_after) elastic_total_momenta_before := total_momenta_before elastic_total_momenta_after := total_momenta_after print("Total momenta before:", total_momenta_before) print("Total momenta after:", total_momenta_after) "& graph it:" momenta_graph := SimpleGraph("Momentum before vs after elastic collision") momenta_graph.set_x_axis(flatten(total_momenta_after), "Total momentum after (g m / s)") momenta_graph.set_y_axis(flatten(total_momenta_before), "Total momentum before (g m / s)") momenta_graph.plot_points() momenta_graph.put_labels() line_info := momenta_graph.best_fit(true) print("Line of best fit for elastic momenta graph:", "$y=({})x+{}$".format(line_info[0].latex(false), line_info[1].latex(false))) "Now, let's calculate the kinetic energy:" print() define calc_ke_on_dataset(mass, velocities) as return ((x) -> calc_kinetic(mass, x))`(velocities) end calc_ke_on_dataset cart1_ke_after := calc_ke_on_dataset`(elastic_masses_c1, elastic_c1_velocities_after) cart2_ke_before := calc_ke_on_dataset`(elastic_masses_c2, elastic_c2_velocities_before) cart2_ke_after := calc_ke_on_dataset`(elastic_masses_c2, elastic_c2_velocities_after) total_ke_before := cart2_ke_before total_ke_after := sums`(cart2_ke_after, cart1_ke_after) elastic_total_ke_before := total_ke_before elastic_total_ke_after := total_ke_after print("Total kinetic energy before:", total_ke_before) print("Total kinetic energy after:", total_ke_after) "& graph it:" ke_graph := SimpleGraph("Kinetic energy before vs after elastic collision") ke_graph.set_x_axis(flatten(total_ke_after), "Total kinetic energy after (g m^2 / s^2)") ke_graph.set_y_axis(flatten(total_ke_before), "Total kinetic energy before (g m^2 / s^2)") ke_graph.plot_points() ke_graph.put_labels() line_info := ke_graph.best_fit(true) print("Line of best fit for elastic kinetic graph:", "$y=({})x+{}$".format(line_info[0].latex(false), line_info[1].latex(false))) "Ok now we're doing the stuff for the inelastic collision" "you will find each cart's velocity before the collision, and the velocity of the" "combined system of two carts after collision (because they're stuck together). Once again, compare" "the momenta and kinetic energies before and after the collision. Is this collision elastic? Is kinetic" "energy conserved? Is momentum conserved? If one was not conserved, what happened to it?" inelastic_datasets := [ inelastic_collisions_data_massless, inelastic_collisions_data_c1m1, inelastic_collisions_data_c1m2, inelastic_collisions_data_c2m1, inelastic_collisions_data_c2m2 ] inelastic_masses_c1 := [ red_car_mass, red_car_mass + m1_mass, red_car_mass + m1_mass + m2_mass, red_car_mass, red_car_mass ] inelastic_masses_c2 := [ blue_car_mass, blue_car_mass, blue_car_mass, blue_car_mass + m1_mass, blue_car_mass + m1_mass + m2_mass ] inelastic_c1_velocities_after := extract_columns(inelastic_datasets, 2) inelastic_c2_velocities_before := extract_columns(inelastic_datasets, 1) inelastic_c2_velocities_after := extract_columns(inelastic_datasets, 2) "Let's calculate the momenta:" print() total_momenta_before := calc_momenta_on_dataset`(inelastic_masses_c2, inelastic_c2_velocities_before) total_momenta_after := calc_momenta_on_dataset`(sums(inelastic_masses_c2, inelastic_masses_c1), inelastic_c2_velocities_after) inelastic_total_momenta_before := total_momenta_before inelastic_total_momenta_after := total_momenta_after print("Total momenta before:", total_momenta_before) print("Total momenta after:", total_momenta_after) "& graph it:" momenta_graph := SimpleGraph("Momentum before vs after inelastic collision") momenta_graph.set_x_axis(flatten(total_momenta_after), "Total momentum after (g m / s)") momenta_graph.set_y_axis(flatten(total_momenta_before), "Total momentum before (g m / s)") momenta_graph.plot_points() momenta_graph.put_labels() line_info := momenta_graph.best_fit(true) print("Line of best fit for inelastic momentum graph:", "$y=({})x+{}$".format(line_info[0].latex(false), line_info[1].latex(false))) "Now, let's calculate the kinetic energy:" print() cart1_ke_after := calc_ke_on_dataset`(inelastic_masses_c1, inelastic_c1_velocities_after) cart2_ke_before := calc_ke_on_dataset`(inelastic_masses_c2, inelastic_c2_velocities_before) cart2_ke_after := calc_ke_on_dataset`(inelastic_masses_c2, inelastic_c2_velocities_after) total_ke_before := cart2_ke_before total_ke_after := sums`(cart2_ke_after, cart1_ke_after) inelastic_total_ke_before := total_ke_before inelastic_total_ke_after := total_ke_after print("Total kinetic energy before:", total_ke_before) print("Total kinetic energy after:", total_ke_after) "& graph it:" ke_graph := SimpleGraph("Kinetic energy before vs after inelastic collision") ke_graph.set_x_axis(flatten(total_ke_after), "Total kinetic energy after (g m^2 / s^2)") ke_graph.set_y_axis(flatten(total_ke_before), "Total kinetic energy before (g m^2 / s^2)") ke_graph.plot_points() ke_graph.put_labels() "Finally, let's see our graphs:" show() print() print("Now, for our tables") print() from physics_utils.table import Table2D trial_num := [0] define make_row(m1, m2, run) as trial_num[0] := trial_num[0] + 1 return [trial_num[0].__int__(), m1, m2, run[1], run[2], run[3]] end make_row table_data := flatten(((m1, m2, runs) -> ((run) -> make_row(m1, m2, run))`(runs))`(elastic_masses_c1, elastic_masses_c2, elastic_datasets)) elastic_collision_table := Table2D() elastic_collision_table.set_labels(["$m_1$", "$m_2$", "$v_{i_2}$", "$v_{f_1}$", "$v_{f_2}$"]) elastic_collision_table.set_data(table_data) "print(elastic_collision_table.latex())" define make_row(m1, m2, run) as trial_num[0] := trial_num[0] + 1 return [trial_num[0].__int__(), m1, m2, run[1], run[2]] end make_row table_data := flatten(((m1, m2, runs) -> ((run) -> make_row(m1, m2, run))`(runs))`(inelastic_masses_c1, inelastic_masses_c2, inelastic_datasets)) inelastic_collision_table := Table2D() inelastic_collision_table.set_labels(["$m_1$", "$m_2$", "$v_{i_2}$", "$v_{f_1}$"]) inelastic_collision_table.set_data(table_data) "print(inelastic_collision_table.latex())" trial_num[0] := 0 define make_row(momenta_before, momenta_after, ke_before, ke_after) as trial_num[0] := trial_num[0] + 1 return [trial_num[0].__int__(), momenta_before, momenta_after, ke_before, ke_after] end make_row table_data := flatten(make_row**(**elastic_total_momenta_before, **elastic_total_momenta_after, **elastic_total_ke_before, **elastic_total_ke_after)) elastic_calc_table := Table2D() elastic_calc_table.set_labels(["Trial", "$p_i$", "$p_f$", "k_{ei}", "k_{ef}"]) elastic_calc_table.set_data(table_data) "print(elastic_calc_table.latex())" table_data := flatten(make_row**(**inelastic_total_momenta_before, **inelastic_total_momenta_after, **inelastic_total_ke_before, **inelastic_total_ke_after)) inelastic_calc_table := Table2D() inelastic_calc_table.set_labels(["Trial", "$p_i$", "$p_f$", "k_{ei}", "k_{ef}"]) inelastic_calc_table.set_data(table_data) print(inelastic_calc_table.latex())