import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('C:/Users/eli/Desktop/application_record.csv') # Recreate the Heatmap shown below df = df.drop('FLAG_MOBIL', axis = 1) sns.heatmap(df.corr(), annot = False, fmt='.1g',cmap= 'coolwarm') fig, ax = plt.subplots(figsize=(10,8)) np.round(df.corr(), 2) sns.heatmap(np.round(df.corr(), 2), annot = True, linewidths=.5, ax=ax) plt.show() plt.figure(figsize=(12,8)) sns.heatmap(df.corr(),cmap='viridis', annot=True) ''' How are the worst movies rated across all platforms? Create a clustermap visualiaztion of all normalized scores. Note the differences in ratings, highly rated movies should be clustered together versus poorly rated movies. Note: this clustermap does need to have the Film titles as the index, feel free to drop it for the clustermap.''' g = sns.clustermap(df_norm_scores, cmap="mako", vmin=1, vmax=5, col_cluster = False)